

Charged-particle multiplicity, centrality and the Glauber model at 2.76 TeV with ALICE

Constantin Loizides for the ALICE collaboration

23 May 2011

XII International Conference on Ultrarelativistic Nucleus-Nucleus collisions

Why measure multiplicity?

- "Easy", day-1 observable determines
 - Density of system
 - Initial conditions
 - Background for hard-probe signals
- "Difficult", convoluted for theory
 - Perturbative vs Non-perturbative,
 - Various scales, hadronization
 - Application of factorization schemes
- Naive parametrization (Npart ~ A, Ncoll ~ A^{4/3}):

$$\frac{dN_{ch}^{AA}}{d\eta}\Big|_{\eta=0} = \left.\frac{dN_{ch}^{NN}}{d\eta}\right|_{\eta=0} \left[\frac{1-x}{2}N_{part} + xN_{coll}\right]$$

- Ncoll scaling (x=1) for Collinear factorization
- Npart scaling (x->0) for shadowing, non-linear QCD dynamics, saturation, collectivity

At RHIC, approximate participant scaling and factorization of energy +centrality was found

Predicted multiplicities for LHC energies 3

Charged multiplicity for mid-rapidity in central Pb+Pb @ 2.76 TeV

Compilation from N.Armesto (Talk@CERN, 03 Sep 2010)

Blue are unscaled model results

ALICE detector and trigger setup

MUON

SPD layer 1

SPD layer 2

PMD

FMD

10

η

- Minbias triggers: Coincidences of
 - SPD (≥2 pixel hit)
 - V0 (A side)
 - V0 (C side)
- Trigger requirements tightened throughout the run period
 - "2-out-of-3", "VOAND", "3-out-of-3"

Relevant for this talk:

- VZERO scintillator hodoscopes
 - (2.8<η<5.1) and (-3.7<η<1.7)
- nZDC (beam rapidity)
- ITS (SPD): First layer ($|\eta|$ <2)
 - Second layer (|η|<1.4)
- TPC (|η|<0.9)

Example VZERO amplitude distribution 5

Trigger efficiency

Efficiency estimated with pp data and HIJING/AMPT

Background (simulated cocktail)

10⁻¹

 10^{-2}

0

Cocktail (HIIJING, QED, SLIGHT/RELDIS) vs data: 3-out-2: clean from 87% Others: clean from 90%

- EM processes
 - QED pair production
 - O(100 kbarn)
 - e⁺e⁻ very soft
 - EM dissociation
 - O(100 barn) C.Oppedisano talk
 - One or few neutrons in ZDC
 - Photonuclear interactions
 - O(10 barn)
- J.Nystrand #533
- Photon energies O(100 GeV), can produce hadrons at mid-rapidity (Kinematics like pA)

STARLIGHT/RELDIS QED

Glauber Monte Carlo

- Geometrical picture of inelastic nucleus+nucleus collision
 - Distribution of nucleons according to Wood-Saxon (2pF)
 - Radius (6.62 \pm 6fm), skin depth (0.546 \pm 0.01 fm)
 - Inter-nucleon distance (0.4 ± 0.4 fm)
 - Straight-line nucleon trajectories
 - Interaction radius given by $\sigma_{_{NN}}$
 - 64 +/- 5 mb used (interp. pp/pp data)
 - Subsequent interactions equally probably
- Systematic uncertainties by varying model parameters
 - Small effect on <Npart>
 - Uncertainty in σ_{NN} dominant for <Ncoll>

Measured cross-sections

<u>Inel. pp cross section at 2.76 TeV:</u> - ALICE preliminary: 62.1 ± 1.6 ± 4.3 mb - Pre-LHC interpolation: 64 mb ± 5 mb (K.Reygers/D.d'Enterria)

K.Oyama talk M.Poghosyan talk

Centrality definition

- Anchor point with Glauber fits ğ 5000 Source distributed by f Npart + (1-f) Ncoll 4000 Typically $f \sim 0.8$ 3000 2000 -Particle production per source modeled via NBD 1000 -Robust results anchoring 5000 between 30% and 90% percentile bins 10^{3} Events Pb-Pb at√s_{NN} = 2.76 TeV Data Region with 100% trigger eff Glauber fit 10² Negligible background f=0.806. u=29.003. k=1.202 Tight correlation between 10 various centrality measures 40-50% 50-60% 30-40% 20-30% 10⁻¹
- **Relation to Glauber values** (Npart, etc.) values from model
 - Difference in <Npart> is <1%, except for 70-80% with < 3.5%

Multiplicity measurement

- Tracklet based
 - $dN/d\eta \sim \alpha(1-\beta)N_{tracklets}$
 - α: Acceptance and efficiency corrections
 - Dominated by acceptance (varies little with centrality)
 - β: Combinatorial background
 - 3 ways to estimate
 - Varies by 1% to 14%

Tracks with zero-p_T extrapolation as cross check

Centrality	$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$	$\langle N_{\rm part} \rangle$	$\left(\frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} \right) / \left(\frac{\langle N_{\mathrm{part}} \rangle}{2} \right)$
0–5%	1601 ± 60	382.8 ± 3.1	8.4 ± 0.3
5-10%	1294 ± 49	329.7 ± 4.6	7.9 ± 0.3
10-20%	966 ± 37	260.5 ± 4.4	7.4 ± 0.3
20-30%	649 ± 23	186.4 ± 3.9	7.0 ± 0.3
30-40%	426 ± 15	128.9 ± 3.3	6.6 ± 0.3
40-50%	261 ± 9	85.0 ± 2.6	6.1 ± 0.3
50-60%	149 ± 6	52.8 ± 2.0	5.7 ± 0.3
60–70%	76 ± 4	30.0 ± 1.3	5.1 ± 0.3
70-80%	35 ± 2	15.8 ± 0.6	4.4 ± 0.4

Sources of error	Relative uncertainty
Background subtraction	0.1% to 2.0%
Particle composition	1.0%
Contamination of weak decays	1.0%
Zero- p_t extrapolation	2.0%
Event generator	2.0%
Centrality	6.2% to 0.4%
Tracklet + vertex cuts	negl.
Material budget	negl.
Detector efficiency	negl.
Background events	negl.
Total	7.0% to 3.8%

PRL, 105, 252301 (2010) PRL, 106, 032301 (2011)

Multiplicity in central Pb+Pb@2.76 TeV 12

Measured dNch/d η = 1584 ± 76 (sys.)

PRL, 105, 252301 (2010)

Blue are unscaled model results

dNch/dn: Energy dependence

13

Measured dNch/d η = 1584 ± 76 (sys.) PRL, 105, 252301 (2010)

dNch/dn: Centrality dependence

PRL, 106, 032301 (2011)

dNch/dn: Centrality dependence

PRL, 106, 032301 (2011)

LHC centrality evolution very similar to RHIC

dNch/dη: Centrality vs models

- Two-component models
 - Soft (~Npart) and hard (~Ncoll) processes
- Saturation-type models
 - Parametrization of the saturation scale with energy (s) + centrality (A)
- Comparison to data
 - DPMJET (with string fusion) stronger rise than data
 - HIJING 2.0 (no quenching)
 - Strong centrality dependent gluon shadowing
 - Fine-tuned to 0-5% dN/dŋ
 - Saturation models
 - Some saturate too much

PRL, 106, 032301 (2011)

Pb+Pb, √s_{NN}=2.76 TeV

16

Transverse energy

- Hadronic transverse energy measured with barrel tracking detectors
 - Model dependent correction (f~0.55) to convert into total transverse energy
- From RHIC to LHC
 - ~2.5 increase in 2dEt/dŋ/Npart
 - ~2.7 increase in dEt/dη
- Energy density estimate $\tau \epsilon_{LHC} \ge 3 \times \tau \epsilon_{RHIC}$

As for dN/d η , centrality dependence similar RHIC. Larger scale factor (2.5) consistent with increase of $< p_{\tau} > (20\%)$

C.Nattrass #630

Summary

- Charged particle multiplicity (transverse E_{T}) increased from RHIC to LHC by a factor of 2.1 (2.5).
 - Initial energy density is at least 3 times larger
 - Rise with collision energy stronger than expect
 - Centrality dependence found to be similar to RHIC
 - Models have a harder time to describe (predict) the increase in energy than the centrality dependence
- Transverse energy measurement puts additional constraints on models since it is also sensitive to the transverse momentum distribution

Extra

Background and offline event selection 20

- Offline event selection for inel. collisions required to deal with
- Beam Background
 - Beam gas and Debunching
- EM processes
 - QED pair production
 - O(100 kbarn)
 - e⁺e⁻ very soft
 - EM dissociation
 - O(100 barn)
 - One or few neutrons in ZDC
 - Photonuclear interactions
 - O(10 barn)
 - Photon energies O(100 GeV), can produce hadrons at mid-rapidity (Kinematics like pA)

C.Oppedisano talk J.Nystrand #533

ZDC timing cut

Data vs simulation (cocktail)

VZERO amplitude (a.u.)

Glauber fits

- Glauber fits
 - Using two component ansatz
 - Distribution of particles with NBD
 - Typically (for the tight trigger conditions) fit up to about 90%

ZDC vs ZEM

M.Guilbaud #413

Centrality resolution

25

Pseudorapidity distribution vs generators 26

H.Dalsgaard #513

Particle production parametrizations 27

