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2 Ultra-relativistic heavy-ion collisions 
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Transverse size of collision region

0.2 GeV/c

>10 GeV/c

~1fm

Study bulk 
QCD matter 
at high T

~10fm

Nebula M1-67
(see hubblesite.org)
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Energy density vs temperature

Fodor et al., JHEP 11 (2010) 077

Slow 
convergence
to ideal gas 
(SB) limit

Rapid cross-over transition between 140 and 200 MeV,  
and energy densities between 0.2 and 1.8 GeV/fm3 
(often characterized by Tc ≈170 MeV and εc ≈ 1 GeV/fm3)

μB=0

http://link.springer.com/article/10.1007/JHEP11(2010)077


4 Control parameters: Collision energy
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5 Control parameters: Collision centrality

Collision centrality

Nuclear cross-section classes
(by slicing in bins of multiplicity)

Cross-section percentile (in %)

arXiv:1301.4361
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Glauber model

Number of participants
(average monotonously rel. to impact parameter) 

Via model

http://arxiv.org/abs/1301.4361


6 Control parameters: Collision systems

time



7 SM of heavy-ion reaction dynamics

(adapted from C.Shen)

Color Glass Condensate:
Gluons saturation 
in nuclear wave function

Hard probes: 
High Q2, produced 
early ~1/Q, penetrating 

Soft probes: 
Low Q2 (≈1GeV2) 
strongly coupled

Glasma
phase
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Soft probes 



9 Energy dependence of transverse energy

Bjorken, PRD 27 (1983) 140

Bjorken estimate:
Central collisions

PRL 109 (2012) 152303

CMS

● System undergoes rapid evolution

– Using 1 fm/c as an upper limit 
for the time needed to “thermalization”

– Leads to densities above the 
transition region (also for AGS)

http://dx.doi.org/10.1103/PhysRevD.27.140
http://prl.aps.org/abstract/PRL/v109/i15/e152303


10 Centrality dependence of dN/dη

Factorization in energy and centrality: 
Shape is strikingly similar to RHIC

arXiv:1202.3233

Glauber IC

Two-component model 
dN
d 

=
dN

d  pp
1−x N collx N part /2 

PRC 70 021902 (2004)

Glauber IC

CGC IC

dN
d 

∝N part
  s



Color glass condensate

PRL 94 022002 (2005)

CGC ICTwo-component models need 
to incorporate strong nuclear 
modification. Saturation mod. 
naturally imply 

http://arxiv.org/abs/arXiv:1202.3233


11

● Different measurements performed 
using real and virtual photons

– E.g. via double ratio

 

Initial temperature at RHIC
Direct photons: No charge, no color, ie. they do not interact further 
                         Use (at low pT) to extract temperature of the system. 

Excess

PRC 87 (2013) 054907

PRL 104 (2010) 132301

PHENIX

PRL 94 (2005) 232301 

Thermal

● Exponential (thermal) shape with 
inverse slope of T~220 MeV in 
excess region

● No excess seen in d+A (or pp)

● Calculations give

– Tinit = 300-600 MeV (>2Tc)

 
PRC 81 (2010) 034911

http://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.054907
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.132301
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.232301
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.81.034911


12 Initial temperature at LHC

● Measure R = (inc (mc

● Uncertainties (exactly or 
partially) cancel in the ratio

– Normalization

– Photon reconstruction 
efficiency

Excess

● Inverse slope: T=304±51 MeV

– About 35% larger 
than at RHIC

– Model calculations 
with Tinit>400 MeV, 
but undershoot the data

Preliminary

Excess

(final results expected on arXiv by end of Sep)

http://arxiv.org/abs/arXiv:1210.5958


13 Initial and final anisotropy (~2000)

Initial spatial anisotropy:
Eccentricity If interactions 

present early
(induces long-
range Δη 
correlations)

ϵstd=
σ y
2
−σ x

2

σ y
2
+σ x

2

Momentum space anisotropy:
Elliptic flow

v 2=⟨cos (2ϕ−2Ψ R)⟩

dN
d ϕ

∼1+2 v2 cos [2(ϕ−ψR)]+…

cos 2φ modulation 

dN/dφ

x

y Nucleus 2Nucleus 1

φ

(ψR=0 , ie. along x)

Time
Illustration with liquid 6Li, Science 298 5601 (2002) 2179-2182

(process is self quenching)

Expect

STAR, PRL 86 (2001) 402

Ideal hydrodynamics

Data
(AuAu,
130 GeV)

v2

PHOBOS Glauber MC

Number of participants

E
cc

en
tr

ic
ity

http://arxiv.org/abs/cond-mat/0212463
http://arxiv.org/abs/nucl-ex/0009011


14 Initial and final anisotropy (~2010)

Initial spatial anisotropy:
Eccentricity

Momentum space anisotropy:
FlowIf interactions 

present early
(induces long-
range Δη 
correlations)

Initial spatial anisotropy not smooth, fluctuates event-by-event 
and contains other higher harmonics / symmetry planes

dN
d ϕ

∼1+ 2 v2 cos [2(ϕ−ψ2)]+ 2v3 cos [3(ϕ−ψ3)]

+ 2v 4 cos[ 4(ϕ−ψ4)]+ 2v5 cos [5 (ϕ−ψ5)]+ …

Alver, Roland

v n=⟨cos (2ϕ−2ψn)⟩ϵn e
−i n ϕnTemperature profiles in transverse plane from hydrodynamical calculation (H. Niemi)

http://arxiv.org/abs/arXiv:1003.0194


15 Two-particle correlations

Δφ

Δφ

Δφ

Δφ Δφ Δφ

Δφ

Δφ Δφ

Δφ ΔφΔη Δη Δη Δη

ΔηΔηΔηΔη

Δη Δη Δη

0-1% 0-5% 5-10% 10-20%

50-60%40-50%30-40%20-30%

60-70% 70-80% 80-90%

ATLAS
2<pT

trig, pT
assoc<3 GeV/c

PRC 86 (2012) 014907

http://prc.aps.org/abstract/PRC/v86/i1/e014907
http://arxiv.org/abs/arXiv:1203.3087


16 Analysis of double ridge in Pb-Pb

Project on Δφ

(w/o jet peak,
eg. |Δη|>0.8)

VnΔ

Extract v
n
(p

T
) using factorization ansatz(*) from global fit 

(*) factorization only approximate, see arXiv:1503.01692ALICE, PLB 708 (2012) 249

http://arxiv.org/abs/1503.01692
http://arxiv.org/abs/1109.2501


17 Hydrodynamical model calculations

Today even second order calculations (full Israel-Stewart) calculations are done. 

Heinz, arXiv:0901.4355

+ freeze-out
conditions

Glauber IC

Two-component model 
dN
d η

=
dN

d ηpp
((1−x )N coll+ x N part /2)

PRC 70 021902 (2004)

Glauber IC

CGC IC

dN
d η

∝N part
α √ s

λ

Color glass condensate

PRL 94 022002 (2005)

CGC ICE
cc

en
tr

ic
ity

Ideal hydroViscous

Viscosity suppresses higher harmonics,
→ vn provide additional sensitivity to η/s 

e-by-e hydro
B. Schenke et al.

η/s=0.16

http://arxiv.org/abs/0901.4355
http://arxiv.org/abs/arXiv:1102.0575v2


18 Extraction of η/s from model calculations

Schenke et al., PRL 110 (2013) 012302

RHIC LHC

Model (IP-Glasma+viscous hydro) extracts larger η/s for LHC
(uncertainty on η/s about O(100%) from initial state, but largely correlated) 

KSS bound

http://arxiv.org/ct?url=http://dx.doi.org/10%2E1103/PhysRevLett%2E110%2E012302&v=27695772
http://arxiv.org/abs/hep-th/0405231


19 Event-by-event fluctuations

Schenke et al., PRL 110 (2013) 012302

Hydrodynamical calculations can
describe event-by-event fluctuations

ATLAS, JHEP 11 (2013) 183

http://arxiv.org/ct?url=http://dx.doi.org/10%2E1103/PhysRevLett%2E110%2E012302&v=27695772
http://arxiv.org/abs/1305.2942


20 Identified-particle elliptic flow

Characteristic particle-mass dependence can be
described by hydrodynamical model calculation 
(taking into account hadronic phase)

arXiv:1202.3233

http://arxiv.org/abs/arXiv:1202.3233


21 Identified-particle triangular flow 

Similar characteristics as elliptic flow and
provides additional constraints on η/s



22

Hard probes 



23 Nuclear modification factor at RHIC

PRL 91 (2003) vol 7

PRC75 (2007) 024909

Strong high pT suppression, consistent 
with parton energy loss in QGP

Absence of suppression 
in d+Au control at midrapidty!  

https://journals.aps.org/prl/issues/91/7
http://arxiv.org/abs/nucl-ex/0611006


24 Nuclear modification factor at LHC

Similar conclusions from measurements at LHC



25 Parton energy loss aka jet quenching

arXiv:1210.7765

Resolution scale of medium

http://arxiv.org/abs/1210.7765


26 Jet suppression

0.6

At high p
T
 similar suppression of jets as of hadrons:

Indicative of coherent energy loss of jet core



27 Dijet asymmetry and jet fragmentation
Mueller and Qin, arXiv:1012.5280

ATLAS, PRL 105 (2010) 252303
 

CMS, PRC 90 (2014) 024908

Perez-Ramon and Renk, arXiv:1411.1983

Data described by “pQCD with appropriate medium modifications”

http://arxiv.org/abs/1012.5280
http://prl.aps.org/abstract/PRL/v105/i25/e252303
http://arxiv.org/abs/1406.0932
http://arxiv.org/abs/1411.1983


28

arXiv:1203.2160

Quark-mass dependence

Expect RAA(light hadrons) < RAA(D) < RAA(B)

(Radiation suppressed for  < MQ/EQ)

“Deadcone effect”

CMS-HIN-12-004-PAS

CMS, PRL 113 (2014) 132301

Not seen for b-jets (m<<jet p
T
)

Andronic et al., arXiv:1506.03981

Seen for B vs D, and described by models

http://arxiv.org/abs/arXiv:1203.2160
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN12004
http://arxiv.org/abs/1312.4198
http://arxiv.org/abs/1506.03981


29 Charmonia

Temperature dependence at high p
T
 

Recombination at low p
T
 

(where charm density is small)

P e r t u r b a t i v e  V a c u u m

cc

C o l o r  S c r e e n i n g

cc

T



30 Bottomonia

Sequential suppression with binding energy and temperature



31

Collectivity in small systems 



32

Pb-Pb

ALICE, PLB 708 (2012) 249

Δη

Δφ

 CMS, JHEP 1009 (2010) 91

pp
(0.0005% of MB)

NS ridge structures in angular correlations

CMS, PLB 718 (2012) 795

p-Pb
(3.1% of MB)

ATLAS, PRL 110 (2013) 182302

p-Pb
(2% of MB)

ALICE, PLB 719 (2013) 29

p-Pb
(20% of MB)

Near-side (NS)
ridges in high
multiplicity events 
at LHC energies

ATLAS-CONF-2015-027

(see B.Wynne, Wed 9:15)

http://arxiv.org/abs/1109.2501
http://arxiv.org/abs/arXiv:1009.4122
http://arxiv.org/abs/arXiv:1210.5482
http://arxiv.org/abs/arXiv:1212.5198
http://arxiv.org/abs/arXiv:1212.2001
http://cds.cern.ch/record/2037663


33 Observation of double ridge

● Extract double ridge structure by subtracting the jet-like 
correlations from 60-100% low multiplicity class 

– Checked that correlations in 60-100% are similar to pp 
(at 2.76 and 7 TeV)

ALICE, PLB 719 (2013) 29

0-20% 60-100%

http://arxiv.org/abs/arXiv:1212.2001


34 Analysis of double ridge arXiv:1409.1792

● vn coefficients

– Significant for n=2 to 5

– Substantial to even high pT

● Multi-particle correlations

– At least 8 particles correlated

– v2{4}≈v2{6}≈v2{8}

● Particle species dependence

– Cross of v2(proton) with 
v2(pion) at about 2 GeV/c
for pT<2 GeV/c

– Similar for v3(Λ)

arXiv:1502.05382

arXiv:1307.3237

Features qualitatively similar 
to those seen in Pb-Pb collisions. 
Suggests same physics at place?
(Note: no direct evidence of jet quenching)

arXiv:1409.3392

http://arxiv.org/abs/1409.1792
http://arxiv.org/abs/1502.05382
http://arxiv.org/abs/1307.3237
http://arxiv.org/abs/1409.3392


35 Interpretation: Hydrodynamics

● Formation of mini-QGP with hydrodynamical evolution

– Obvious conclusion, since features in data similar to Pb-Pb

● Debate if hydro can be applied, and gives with meaningful parameters 
(eg. η/s~0.08 smaller than in PbPb)?

● Macro- and microscopic length/time scales separable? 

arXiv:1307.5060

Hydro

arXiv:1504.02529

E-by-E hydro vs ideal gas 
(plus late-stage hadronic cascade)

arXiv:1404.7327

η/s=0.08

http://arxiv.org/abs/1307.5060
http://arxiv.org/abs/1504.02529
http://arxiv.org/abs/1404.7327


36 Interpretation: Glasma graphs in initial state

BFKL-
Minijets

Glasma
(enhanced by 
αs

-8 for kT < Qs) 

● Two symmetric ridges predicted by CGC glasma 
graphs found to describe the ridge yields and shape

– Already applied at RHIC and in 7 TeV pp

● However, not obvious how to explain multi-particle 
cumulants and PID dependence

Dusling and Venugopalan, PRD 87 (2013) 094034
 

(at large Δη)

http://arxiv.org/abs/arXiv:1302.7018
http://arxiv.org/abs/arXiv:1302.7018


37 Saturation                 vs   multiplicity effect?

arXiv:1412.6828p-going sidePb-going side

Large-x gluons in Pb
Small-x effects suppressed

Small-x gluons in Pb
Small-x effects  enhanced

Pb-goingp-going

http://arxiv.org/abs/1412.6828


38 v2 coefficients at 2.5<|η|<4.0 ALICE, arXiv:1506.08032

● Sizable inclusive muon v2 with 
Pb-going larger than p-going

● Ratio from constant fit

– 1.16±0.06 with χ2/NDF=0.4

● Parton cascade model (which 
describes a variety of data in 
p/AA) only qualitatively agrees

● Vastly different particle 
composition or finite v2 for HF 
muons (as in PbPb)?

http://arxiv.org/abs/1506.08032


39 Prel. LHCb result
2<η

lab
<4.9

NS ridge is stronger in Pb-going case

LHCb-CONF-2015-004

https://cds.cern.ch/record/2037107?ln=en


40 Saturation                 vs   multiplicity effect?

● v2 (or NS rigde yields) 
larger on Pb-going than 
on p-going side

● For same multiplicity 
(in 2<η<4.9) LHCb finds 
the same NS rigde yields

● Suggests that multiplicity 
(density) matters

arXiv:1412.6828p-going sidePb-going side

Large-x gluons in Pb
Small-x effects suppressed

Small-x gluons in Pb
Small-x effects  enhanced

Pb-goingp-going

LHCb-CONF-2015-004

(p-Pb activity scaled by ~0.77 
for backward VELO acceptance)

http://arxiv.org/abs/1412.6828
https://cds.cern.ch/record/2037107?ln=en


41 v
2
 and v

3
 in dAu at RHIC 

v3

PHENIX, PRL 111 (2013) 212301

Large v
2
 (about twice as much as that of pPb) and negligible 

v
3
 found in dAu, as expect from initial state eccentricities.

http://arxiv.org/abs/arXiv:1303.1794


42 Geometric engineering

Expectation from IS:
● 3He+Au (0-5%) Npart=25.0 
2=0.504   3=0.283
● d+Au (0-5%) Npart=17.8
2=0.540   3=0.190

Nagle et al., PRL 113 (2014) 112301

Measurement:
● The v2 of 3He+Au
   is similar to that of d+Au
● A clear v3 signal observed 

in 0-5% 3He+Au collisions

arXiv:1507.06273

http://arxiv.org/abs/arXiv:1312.4565
http://arxiv.org/abs/1507.06273


43 Summary

● Significant advances in recent years in the understanding of QGP 

– Nearly perfect liquid
● η/s close to minimum, and larger at LHC than at RHIC energies
● Variety of observables to further constrain models

– Jets are weakly coupled to the medium
● Medium modified pQCD models can describe features of data
● Coherent energy loss at high, b vs c-quark mass ordering at low pT

– Sequential melting and recombination

● Collective effects in small systems

– Not any longer just simple control systems
● Challenge understanding of initial and final state effects

– May provide a window into non-equilibrium dynamics 

Stay tuned as results from pAu at RHIC, and more from run 2 at LHC will come soon!



44 Long-range elliptic anisotropy arXiv:1509.04776

Energy + multiplicity independent v
2

(p
T
 shape similar to that 

seen in p+Pb and Pb+Pb)

(today)

http://arxiv.org/abs/1509.04776


45 Long-range elliptic anisotropy arXiv:1509.04776

(today)

http://arxiv.org/abs/1509.04776


46 Extra



47
PRL 109 (2012) 252301

Chemical and thermal freezeout

arXiv:1407.5003

χ2/dof = 17.4/9 

● Grand-canonical fits work well
● Deviations eg. for p/π may point to 

the relevance of other effects like
● Rescattering in hadronic phase
● Non-equilibrium effects
● Flavor-dependent freeze-out  

pT
flow

= pT+mβT
flow

γT
flow

LHC

RHIC

Shuryak and Zhirov, PLB 89 (1979) 253

http://prl.aps.org/abstract/PRL/v109/i25/e252301
http://arxiv.org/abs/1407.5003
https://inspirehep.net/record/148252


48 Measured v2 vs centrality at LHC

Two-particle 
methods



49 Multi-particle correlations: v2{4} and higher 
(From S. Tuo)

Multi-particle correlations (cumulant) studies 
extract the genuine multi-particle correlation 

v2 {4 }=
4√−cn{4 }



50 Multi-particle correlations: v2{4} and higher

Two-particle 
methods

Multi-particle 
methods

Multi-particle correlation v2{n} results converge for n≥4, 
indicating that non-flow contribution is negligible for n≥4 

(difference between 
multi- and two particle 
correlations originates 
from non-flow and 
flow fluctuations)



51 Beam energy scan at RHIC



52 Ultra-central collisions

JHEP 02 (2014) 088

http://arxiv.org/abs/1312.1845


53 Comparison data and models

(uncertainty dominated by assumptions about initial state)



54 Importance of initial state fluctuations
Standard Eccentricity

Cu+Cu

Au+Au

x

y Nucleus 2Nucleus 1

φ

Participant Eccentricity

Cu+Cu

Au+Au

Nucleus 1

Nucleus 2

Participants 

x'y'

b

PHOBOS, QM05

PHOBOS, PRL 98 (2007) 242302

http://arxiv.org/abs/nucl-ex/0610037


55 Chemical freeze-out at LHC



56 Transport parameter PRC 90 (2014) 014909

(for quark jet with E=10 GeV initially)

http://arxiv.org/abs/1312.5003


57 Jet quenching: Dijet imbalance 

AJAJAJAJ

Δφ Δφ Δφ Δφ

Momentum imbalance wrt to MC (pp) reference 
increases with increasing centrality. 
No (or very little) azimuthal decorrelation.

40-100% 0-10%20-40% 10-20%

ATLAS,  PRL 105 (2010) 252303
CMS,     PRC 84 (2011) 024906

http://prl.aps.org/abstract/PRL/v105/i25/e252303
http://prc.aps.org/abstract/PRC/v84/i2/e024906


58 Track spectrum inside jets
CMS, PRC 90 (2014) 024908

http://arxiv.org/abs/1406.0932


59 Comparison to prel. CMS
-2.4 < trig < -2

: 0                2                 4

2 < trig < 2.4

: -4               -2                 0

CMS-HIN-14-000

V
2
=0.0035

↓
v

2
=0.06

V
2
=0.005

↓
v

2
=0.07

● Resulting coefficients 

– of similar magnitude

– with same asymmetry

● Not apples-to-apples comparison

– Muons vs charged particles

– Kinematic ranges + event selection 

https://cds.cern.ch/record/1703271/files/HIN-14-008-pas.pdf


60 Comparison with AMPT

● AMPT (σ=3mb) at generator 
level, decay particles to 
muons, apply rel. efficiencies

● Mimic every aspect of the 
analysis as closely as possible 

– Event selection

– Subtraction method
● AMPT shows larger sensitivity 

than data to low-multiplicity 
class scaling (up to f=2)

● Find HF muon v2 to be 0 in 
AMPT (using 5M events with 
HF muon in acceptance for 
each beam direction)

– Set it to 0 in the final results to 
reduce statistical fluctuations

ALICE, arXiv:1506.08032

http://arxiv.org/abs/1506.08032


61 Comparison with Pb-Pb

● At low pT (<1.5 GeV/c), the calculation roughly describes the p-going, 
but overpredicts the Pb-going case 

● At higher pT, different trends for both beam directions

● Possible scenario

– Drastically different relative parent composition in AMPT vs data

– Finite value of v2 for muons from HF decay (observed in Pb-Pb) 

ALICE, arXiv:1507.03134

http://arxiv.org/abs/1507.03134


62 Factorization of v2 in p-Pb CMS, arXiv:1503.01692

http://arxiv.org/abs/1503.01692


63 Associated yields ALICE, arXiv:1406.5463

Associated yields after long range subtraction 
are smaller for lower multiplicity classes

http://arxiv.org/abs/1406.5463


64 Charged particle RpPb

ALICE, PRL 110 (2013) 082302

pPb (minbias)

PbPb (0-5%)

No surprises at high p
T
 in first results:

Supports existence of strong final 
state effects (at mid-rapidity) in PbPb. 

http://arxiv.org/abs/arXiv:1210.4520


65 QpPb

arXiv:1412.6828

http://arxiv.org/abs/1412.6828


66 QpPb
arXiv:1412.6828

http://arxiv.org/abs/1412.6828


67 Heavy-flavor electron ridge

At mid-rapidity, double ridge for electrons from HF decays observed



68 AMPT describes data quite well (example)
arXiv:1406.2804

http://arxiv.org/abs/1406.2804
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