Collective Behavior in Heavy Ion Collisions

Constantin Loizides (LBNL/EMMI)

28 July 2011

Study hot QCD matter

Phase diagram of water (simplified)

Phase diagram of QCD (simplified)

Experimental study of QCD phase diagram by: colliding nuclei head-on to convert cold nuclear matter into a fireball of partons

Complex collision dynamics

Studying matter in the laboratory

Probing the matter microscopically: (Hard probes, C.Salgado next)

Nuclear geometry and collision centrality

Nuclei are "macroscopic": Characterize collisions by impact parameter

- Correlate yields from disconnected parts of phase space
 - Correlation arises from common dependence on collision impact parameter
- Order events by centrality metric
 - Typically, classify them as "ordered" fraction of total cross section
 - eg. 0-5% most central
 - Number of participants (volume)

Heavy ion experiments at RHIC/LHC

- RHIC: First beams June 2000
 - p+p, d+Au, Cu+Cu, Au+Au
 (~20, 62.4, 130, 200 AGeV)
- 2 multipurpose (PHENIX, STAR) and 2 specialized (BRAHMS, PHOBOS) experiments
 - >2006, only STAR and PHENIX
- Beam energy scan (2010/11)

- LHC: First beams in Nov 2009
 - p+p (900, 2.36, 2.76, 7 TeV)
 - Pb+Pb at 2.76 ATeV in Nov 2010
- 1 dedicated HI experiment
 - Mid-rapidity, low mass, PID
- 2 large HEP experiments
 - Large acceptance, full calorimetry

QGP cross-over phase transition

Lattice predicts a cross-over phase transition from hadronic to partonic degrees of freedom

$$T_c \approx 145-175 \text{ MeV}$$

 $\epsilon_c \sim 1 \text{ GeV/fm3}$

Initial temperature at RHIC

<u>Direct photons</u>: No charge, no color, ie. they do not interact Emission over all lifetime convolution of all T

- Exponential (thermal) shape with T~200 MeV
- No excess in d+Au data
- Emission rate and shape consistent with that from equilibrated matter
- $T_{hydro} = 300 600 \text{ MeV} (> 2 \text{ Tc})$

First experimental observation of T>Tc

What do we know already from LHC?

Compared to top RHIC energy

- x2.1 increase in $dN_{ch}/d\eta$ (x1.9 to pp)
- x2.5-3 times larger energy density
 - Midrapidity dE_T/dη ~ 2 TeV at LHC

$$\tau \epsilon_{LHC} \ge 3 \times \tau \epsilon_{RHIC}$$

How can we prove we make matter?

Ultracold Fermionic Atom Fluid (⁶Li)

- Optically trapped atoms
 - Degenerate Fermi gas
 - NanoKelvin temperature
- Interactions magnetically tuned to Feshbash resonance
 - Unitary limit: Largest 2-body scattering cross section
 - "Strongly-coupled" system
- Prepare system with spatial anisotropy
 - Develops momentum anisotropy
 - Analysis of spatial profile

Schaefer/Cao Mon 1K

Initial spatial anisotropy

Eccentricity

$$\varepsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$$

Interactions present early

Elliptic flow

$$v_{2} = \frac{\langle p_{x}^{2} \rangle - \langle p_{y}^{2} \rangle}{\langle p_{x}^{2} \rangle + \langle p_{y}^{2} \rangle}$$

Final momentum anisotropy

$$\frac{dN}{d\phi} \sim 1 + 2v_2 \cos[2(\phi - \psi_R)] + \dots$$

Parton transport model: Bolzmann equation with 2-to-2 gluon processes

D.Molnar, M.Gyulassy NPA 697 (2002)

HUGE cross sections needed to describe v₂

Need large opacity to describe elliptic flow, ie elastic parton cross sections as large as inelastic the proton cross-section.

Elliptic flow and ideal hydrodynamics

Ideal relativistic hydrodynamics

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} - pg^{\mu\nu}$$

$$\delta_{\mu}T^{\mu\nu} = 0$$

$$\delta_{\mu}N^{\mu}_{i} = 0, i=B,S,...$$

$$p = p(e,n)$$
 Closure with EoS

Assumption:

After a thermalization time (≤1fm/c) a system in local equilibrium with zero mean free path and zero viscosity is created

Transverse Momentum p_T (GeV/c)

Perfect fluid?

Shear viscosity in QCD

Analytic: Csernai, Kapusta and McClerran PRL 97, 152303 (2006) Lattice: H. Meyer, PR D76, 101701R (2007)

 $\frac{\eta}{s} = \frac{1}{4\pi}$

For a large class of holographic duals (see A.Karch Wed plen.)

Description of initial state?

Glauber IC

Two classes of models describe the multiplicity (believed to be sensitive to initial state) equally well

Ambiguity translates into conclusions

Ambiguity in description of initial state allows for various models: Size of viscous corrections and/or soft equation of state?

Combination of many calculations, including state-of-art results from Israel-Stewart theory for a conformal fluid (2+1D), hint to a low shear viscosity to entropy ratio:

Largest part of uncertainties still from the ambiguity in the description of initial state.

$$\frac{1}{4\pi} < \frac{\eta}{s} < \frac{3}{4\pi}$$

18

Ultracold Fermionic Atom Fluid (⁶Li)

T=0.1neV (QGP ~0.3TeV)

Schaefer/ Cao Mon 1K

Low temperature: Breathing mode

High temperature: Elliptic flow

Does the picture change at the LHC?

Striking similarities between data over about two orders of collision energy. Factorization into energy and centrality.

Two-particle correlation landscape (LHC) 20

2<pt^{trigger}, pt^{associated}<3 GeV/c

A.Bilandzic for ALICE, QM'11

Multi-particle correlations (cumulant) studies extract the genuine multi-particle correlation

LHC "first day": Elliptic flow

Integrated v_2 : 30% increase from 0.2 TeV (STAR) to 2.76 TeV (ALICE) Over all centrality classes, due to the increase of $< p_T >$

No qualitative change in the observable at the LHC

A closer look ...

Remarkable precision across four systems and experiments.

Low viscosity fluid also at the LHC

Increase well within the range of viscous hydro predictions

Importance of initial state fluctuations

Higher azimuthal harmonics

B.Alver, G.Roland P.Sorenson, 2010

Analogous to power spectrum extracted from cosmic microwave background radiation

Kowalski, Lappi and Venugopalan, Phys.Rev.Lett. 100:022303

Angular Size

Initial spatial anisotropy not an almond, may lead to higher harmonic anisotropies in the final state

$$\frac{dN}{d\phi} \sim 1 + 2v_2 \cos[2(\phi - \psi_2)] + 2v_3 \cos[3(\phi - \psi_3)] + 2v_4 \cos[4(\phi - \psi_4)] + 2v_5 \cos[5(\phi - \psi_5)] + \dots$$

S.Mohapatra/ E.Appelt Mon 2K

Triangular flow

Sizeable triangular flow observed. As expected, centrality dependence is different to that of elliptic flow. Measurements vs reaction planes yield zero as it should if from fluctuations.

Common origin interpreted by hydro

Same mass splitting for v_3 as predicted for v_2 by hydro.

(Note also that the crossing between (anti-) protons and pions happens at the same $p_{\scriptscriptstyle T}$ which for v2 was considered a sign of recombination.)

Hydro: Shen et al., arxiv:1105.3226 (no afterburner)

Fluctuations, viscosity and e-by-e hydro 29

x [fm]

The overall dependence of v_2 and v_3 is described. However, not yet for a single η /s value. More constraints on initial conditions provided by v_3 and higher harmonics.

Many higher moments measured

Higher moments are measured up to v_6 . Power spectrum of QGP. (Results by all collaborations at RHIC/LHC.)

"Death of ridges and cones"

Structures seen in two particle correlations (reported mainly at RHIC) are naturally explained by measured anisotropic flow coefficients.

Where does the decomposition break? 32

$$\frac{\mathrm{dN^{pairs}}}{\mathrm{d}\Delta\phi} \propto 1 + \sum_{n} 2V_{n\Delta}(p_T^t, p_T^a) \cos(n\Delta\phi)$$

$$\frac{\mathrm{dN}}{\mathrm{d}\phi} \propto 1 + \sum_{n} 2v_n(p_T) \cos\left(n(\phi - \Psi_n)\right)$$

If bulk flow then:

$$V_{n\Delta}(p_T^t, p_T^a) = v_n(p_T^t) v_n(p_T^a)$$

Perform global fit for each harmonics

Two particle correlations are well described via bulk flow decomposition up to about 4 GeV. Similar for other harmonics (except v_1). Challenge the jet heating picture (next talk)?

Melting of Upsilon (2S,3S)

Direct access to the deconfined matter state? Stay tuned Melting temperatures from the lattice are about 1.2 and 1.6 Tc.

Summary

- Exciting and stimulating time in our field with fruitful interplay of heavy-ion experiments at RHIC and LHC.
 - Characterization of LHC bulk properties well underway
 - No big picture changes (unlike the transition from SPS to RHIC)
 - Also first results from beam-energy scan (not discussed)
- Tremendous progress in the measurement of the QGP viscosity
 - The most perfect known fluids are the coldest and the hottest
 - QGP power spectrum (Vn) from fluctuations extracted
 - Expected to provide further constraints on η/s
 - Too early to conclude about precise value of η /s at the LHC

Special thanks to ALICE, ATLAS, CMD, STAR+PHENIX collaborations for their exiting new results and apologies to what I could have not shown for space-time restrictions.

Extra 35

- v₂ of φ meson does not follow the trend for other hadrons at 11.5 GeV
- Significant difference between baryon/anti-baryon v₂ @ 7.7&11.5 GeV
 No scaling between particles and anti-particles

Moments of net proton distribution (χ): 1^{st} - mean, 2^{nd} - variance (σ^2) 3^{rd} - skewness (S), 4^{th} - kurtosis (k)

- Connected to hydrodynamic susceptibilities
- Sensitive to the correlation length of the system

$$S \sigma = \chi^{(3)} / \chi^{(2)}$$
 $k \sigma^2 = \chi^{(4)} / \chi^{(2)}$

- Consistent with Lattice QCD and Hadron Resonance Gas (HRG) model at higher energies
- Deviates from HRG below 39 GeV

Change in R_{AA} between 22.4 and 39 GeV 38

- Suppression p_t > 3 GeV/c consistent with parton energy loss at 62.4, 200 GeV:
- No suppression at 22.4 GeV
 Enhancement consistent with Cronin enhancement
- Some hints from Beam Energy Scan program at RHIC on critical points between 7 and 20 GeV - stay tuned!

Even heaviest particles flow

Partonic collectivity at RHIC: Heavy multi-strange particles flow as protons and pions

Constituent quark scaling

All particles flow as if frozen out from a flowing soup of constituent quarks.

Flow methods

Two-particle cumulant

$$v{2} = \sqrt{\langle \cos(\varphi_1 - \varphi_2) \rangle}$$

Measures:

$$v\{2\}^{2} = \langle v \rangle^{2} + \sigma_{v_{2}}^{2} + \delta$$
$$v \gg 1/\sqrt{M}$$

Four-particle cumulant

$$v\{4\} = \left(2\langle\cos(\varphi_1 - \varphi_2)\rangle^2 - \langle\cos(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)\rangle\right)^{1/4}$$

Measures:

$$v{4}^{2}=\langle v \rangle^{2}-\sigma_{v_{2}}^{2}$$

$$v\gg 1/M^{3/4}$$

$$v\{subEP\} = \frac{\langle cos(\phi - \psi_A) \rangle}{R}$$

$$R = \sqrt{\langle cos(\psi_A - \psi_B) \rangle}$$

Measures:

$$\begin{aligned} v\{\text{subEP}\}^2 &= \langle \, v \, \rangle^2 + \big(1 - f(R) \big) \, \sigma_{v_2}^2 \\ &+ \big(1 - 2 f(R) \big) \delta \end{aligned}$$

Zero-Yield-At-Minimum in ridge region

Observation of ridge in high density proton-proton collisions

Shear viscosity in fluids

$$\frac{F}{A} = \eta \frac{v}{L}$$

quasi-particle interaction cross section

Comparing relativistic fluids: η/s

- s = entropy density
- scaling param. η /s emerges from relativistic hydro eqns.
- generalization for non-rel. fluids: η /w (w=enthalpy) (Liao and Koch, Phys.Rev. C81 (2010) 014902)

Large σ → small η/s
→ Strongly-coupled matter
→ "perfect liquid"

Structures seen in two particle correlations (reported mainly at RHIC) are naturally explained by measured anisotropic flow coefficients.

From Jamie Nagle's talk at QM'09

Final state: Kinetic equilibrium

Freeze-out temperature & radial velocity from blast-wave fit

Blast-wave model: Thermal Boltzmann source boosted with linear velocity profile

Spectra consistent with common temperature plus radial flow velocity. 20% stronger radial flow at LHC.

Final state: Chemical equilibrium

Grand-canonical ensemble analysis $N_{\cdot} \propto V \int \frac{d^3 p}{\sqrt{1 - m^2}} \frac{1}{\sqrt{1 - m^2}}$

 $N_i \propto V \int \frac{d^3 p}{2 \pi^3} \frac{1}{e^{(E_i - \mu_B B_i)/Tch} \pm 1}$

T_{ch} Chemical freeze-out temperature

μ_B Baryochemical potential

All hadron species emitted from a thermal source: Tch = 163 \pm 4 MeV, $\mu_{\rm B}$ = 24 \pm 4 MeV

System decouples at $T_{ch} \sim T_{c}$

