

Reminder: Scientific approach

Nuclear modification factor

$$R_{\rm AB} = \frac{\mathrm{d}N_{AB}/\mathrm{d}p_{\rm T}}{N_{\rm coll}\,\mathrm{d}N_{pp}/\mathrm{d}p_{\rm T}}$$

Charged particle spectra strongly modified in PbPb collisions

The pPb data confirm that the effect in PbPb is from the FS

New ALICE data consistent with no modification up to p_{τ} =50 GeV/c

ALI-PUB-75255

$$R_{\rm pPb} = \frac{\mathrm{d}N_{pPb}/\mathrm{d}p_{\rm T}}{N_{\rm coll}\,\mathrm{d}N_{pp}/\mathrm{d}p_{\rm T}}$$

Nuclear modification factor

New ALICE data consistent with no modification up to p_{τ} =50 GeV/c

ALICE, EPJC 74 (2014) 3054

CMS-PAS-HIN-14-001

Same conclusion from jets

Nuclear modification factor

 $= \frac{\mathrm{d}N_{pPb}/\mathrm{d}p_{\mathrm{T}}}{N_{\mathrm{coll}}\,\mathrm{d}N_{pp}/\mathrm{d}p_{\mathrm{T}}}$ R_{pPb}

New ALICE data consistent with no modification up to p_{τ} =50 GeV/c

Same conclusion from jets

CMS observes a large enhancement at high p₋

Fermi-

motion

JHEP 04 (2009) 065

antishadowing

EPS09

R_{pPb} cannot be described by nPDF: Anti-shadowing seems not to be large enough

CMS observes a large enhancement at high $p_{\scriptscriptstyle T}$

Confirmed by ATLAS ATLAS-CONF-2014-029

Different impression when looking at the ALICE points

The discrepancy mainly comes from tension in the interpolated pp reference

Nuclear modification factor

- "Cronin" enhancement
 - First observed by Cronin in PRD 11 (1975) 3105
- Traditional explanation
 - Multiple soft scatterings in IS prior to hard scatter (arXiv:hep-ph/0212148)

Enhancement at intermediate p_{T}

Nuclear modification factor

At intermediate p_T (Cronin region):

- Indication of mass ordering
 - No enhancement for pions and kaons
 - Pronounced peak for protons
 - Even stronger for cascades

Particle species dependence points to relevance of final state effects

The Φ meson

The Φ does not have the same Cronin enhancement as the proton, and also its shape in pPb does not change significantly with multiplicity

Baryon-over-meson enhancement

Significant multiplicity dependence of proton over pion and Λ over K^0_S ratio: reminiscent of observations in PbPb (usually attributed to radial flow or recombination)

Baryon-over-meson enhancement in-/out-side of jets

The enhancement is not coming from jets

- Reveal double ridge by subtracting per-trigger yield of low from high multiplicity events
- Results looks so much like flow in AA

Double ridge in pPb

- Reveal double ridge by subtracting per-trigger yield of low from high multiplicity events
- Results looks so much like flow in AA
- Mass ordering and crossing

"0-20%"

ALICE, PLB 726 (2013) 164

Integrated v₃ in PbPb and pPb

- Same v₃ in pPb as in PbPb
- Turn on at around M=50 tracks (~minbias pPb)
- Established picture in PbPb
 - Transformation of IS fluctuations into FS via interactions

CMS, PLB 724 (2013) 213

- Same physics mechanism despite different underlying dynamics (+ system size)?
- Maybe we select on events in which the proton wave function fluctuated to large values (fat proton, Mueller, arXiv:1307.5911v2)

Identified particle v₃

Similar for v_3 , crossing at around 2 GeV/c, points to same physics origin for v_3 in pPb as in PbPb

Multi-particle correlations

Two-particle correlation

Multi-particle correlation

Multi-particle (>2) cumulants:

$$\langle\langle 6\rangle\rangle = \langle\langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)}\rangle\rangle$$

$$v_n\{6\} = \sqrt[4]{\frac{1}{4}c_n\{6\}}$$

 $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$

$$c_n\{6\} = \langle \langle 6 \rangle \rangle - 9 \cdot \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle + 12 \cdot \langle \langle 2 \rangle \rangle^3$$

$$v_n\{8\} = \sqrt[4]{-\frac{1}{33}c_n\{8\}}$$

Insensitive to non-flow effect

Q-cumulant, PRC 83 (2011) 044913

In hydrodynamics expect: $v_2\{2\} > v_2\{4\} \approx v_2\{6\} \approx v_2\{8\} \approx v_2\{\infty\}$

Multi-particle correlations

Multi-particle correlation results are the same within 10%. Strong evidence of collective nature of correlations.

Femtoscopy using 3-pion cumulants

The baseline for the 3-pion cumulants is much more flat than for 2-pion correlations

Freeze-out radii (R_{inv}) vs N_{ch}

- Exhibit different trend (with linear fit over measured region)
- Radii in pp and pPb at similar measured Nch are with 5-15% while larger difference (up to 30-50%) between pPb and PbPb
- Not much room for a hydro-dynamical expansion in pPb beyond what might already be there in pp

k_⊤ dependence of radii in pPb

- 3d radii in LCMS from twoparticle correlations
 - Needs understanding of background using MC
- Radii decrease w increasing k_{T} as in AA (and in hydro)
 - Similar high multiplicity pp

Even stronger v₂ in 0-5% d+Au at RHIC

Negligible v₃ in 0-5% d+Au at RHIC

Geometry engineering

Geometry engineering: He³-Au data

Data confirm the expectation: Significant v_3 found, and v_2 similar to dAu

Geometry engineering: He³-Au data

Geometry engineering: He³-Au data

Mass ordering for identified particles observed

arXiv:1404.5291

$$\frac{1}{\bar{R}} = \sqrt{\left(\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2}\right)}$$

Scaling with R across systems: Implies evidence for radial expansion

Do we indeed produce a strongly coupled liquid in "dilute-dense" collisions?

- Azimuthal anisotropies (v_n)
- Characteristic $v_n(p_T)$ shape
- Mass ordering of $v_n(p_T)$
- Characteristic multiplicity dependence

- Similar size of higher order cumulants
- Weak rapidity dependence of correlations
- Characteristic η-dependence of v₂
- Breaking of factorization
- Event angle correlations (not measured in pPb)

All signatures known from PbPb also found in pPb

If it is really hydrodynamic QGP, what about parton energy loss?

Indication of parton energy loss?

In PbPb at high p_T , v_2 =5% thought to be from parton energy loss. Is it crazy to speculate the same here? Need theory guidance!

Modification of fragmentation function?

Charged particle QpPb

Bias induced by estimator shadows small change

Hint of suppression at 10 GeV? (Uncertainties largely correlated!)

- J/ψ → μμ: Multiplicity dependent suppression in p-going direction, and no suppression in Pb-going direction
 - Consistent with shadowing
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
 - Needs additional effect (Final state?)

Summary / Outlook

- All prominent signatures of collectivity known from AA found also in "dilute+dense" collisions
 - More experimental results expected from pAu at RHIC and high mult. pp from RUN2 at LHC
- Hydrodynamical models, and other models like IP-GLASMA (+MUSIC) or AMPT, can describe the data
 - Systematic effort needed to apply models to data consistently (and across systems)
- The quest for jet quenching in "dilute-dense" collisions is open
 - Is it possible we see jet modification without (strong) jet quenching?
 - Theoretical and experimental effort needed

Only a selection of all available results shown, you find them here:

ALICE results: http://aliceinfo.cern.ch/ArtSubmission/publications

ATLAS results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

CMS results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Comparison pp spectra: ALICE vs CMS

Needs a measurement of the pp reference during run 2

$$r_{n} = \frac{V_{n\Delta}(p_{T}^{a}, p_{T}^{b})}{\sqrt{V_{n\Delta}(p_{T}^{a}, p_{T}^{a})} \sqrt{V_{n\Delta}(p_{T}^{b}, p_{T}^{b})}}$$

$$\sim \left\langle \cos[n(\Psi_{n}(p_{T}^{a}) - \Psi_{n}(p_{T}^{b}))] \right\rangle$$

Only a small effect, pPb is very smooth

$$r_n = \frac{V_{n\Delta}(p_T^a, p_T^b)}{\sqrt{V_{n\Delta}(p_T^a, p_T^a)} \sqrt{V_{n\Delta}(p_T^b, p_T^b)}} \quad 42$$

Effect in pPb is comparable to that in peripheral PbPb

Dijet imbalance: Not present in pPb

Dijet imbalance not observed in pPb collisions, hence final state effect in PbPb

Charged dijet acoplanarity

And the jet at low p_{T} ?

- Ridge and jet yield seem additive in 2PC
- Subtract ridge to obtain jet yields
- Resulting jet yields are constant over >60% of the pPb cross section
 - No modification even at low p_T
- Consistent with picture of minijets in pPb from independent super-positions of NN collisions with incoherent fragmentation

Radii comparison with IP-Glasma model

- Similarity between radii in pPb and pp can be described by Yang-Mills evolution alone
- They also can be reproduced by adding a hydrodynamic phase

GLASMA points are first scaled such that the calculations in pp match the ALICE pp data. Scale = 1.15. GLASMA calculations have uncertainty due to infrared cutoff (m=0.1 GeV).

p-Pb \ s_{NN} = 5.02 TeV

Ridge modulation v_2 and v_3 and CGC

 Two symmetric ridges predicted by CGC glasma graphs found to describe the ridge yields and shape

 However, a large v₃ component would be a challenge for the model

Dusling and Venugopalan, PRD 87 (2013) 094034

 $2 < p_{_{\mathrm{T,tria}}} < 4 \; \mathrm{GeV}/c$

 $1 < p_{\text{Tassoc}} < 2 \text{ GeV/}c$

Identified particle spectra

Spectra consistent with radial flow picture (also in pp)

Identified particle spectra

- Spectra feature effects of radial flow
- In Pythia, these can be mimicked by Color Reconnections of strings
- Data in pp and pPb can be related by geometrical scaling

Coherent MPI effects

ALICE, PLB 727 (2013) 371

Rise of $\langle p_T \rangle$ can not be reproduced by incoherent superposition of MPI

Average p_T versus N_{ch}

pp

- Within PYTHIA model increase in mean p_T can be modeled with Color Reconnections between strings
- Can be interpreted as collective effect (e.g. Velasquez et al., arXiv:1303.6326v1)

pPb

- Increase follows pp up to N_{ch}~14 (90% of pp cross section, pp already biased)
- Glauber MC (as other models based on incoherent superposition) fails
- Like in pp: Do we need a (microscopic) concept of interacting strings?
- EPOS LHC which includes a hydro evolution describes the data (also pp)

PbPb

 As expected, incoherent superposition can not describe data

Y(2S)/Y(1S) and Y(3S)/Y(1S)

- Strong suppression (even in pPb)
 - Despite similar Q²
- Final state effect?
 - Suppression in PbPb much stronger!

- Multiplicity scaling of suppression?
- Higher Y states affect multiplicity?
- Same mechanism as in PbPb?

ψ(2S) production in p-Pb

- Stronger relative suppression in backward direction:
 Qualitatively expected from break-up due to comoving system
- But also strong : ___ in forward direction
 - Final state effects?

Centrality from 55 multiplicity in pPb

- Small dynamic range
- Several biases are present
 - Multiplicity bias
 - Jet veto bias
 - Geometrical bias
- Include (and indicate) bias in the definition

$$Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb}/dp_T \rangle_{cent}}{dN^{pp}/dp_T}$$

Note Q_{pPb} is not 1
in absence of nuclear effects

Centrality from 56 multiplicity in pPb

Using hits at mid-rapidty (CL1)

- Small dynamic range
- Several biases are present
 - Multiplicity bias
 - Jet veto bias
 - Geometrical bias
- Include (and indicate) bias in the definition

$$Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb}/dp_T \rangle_{cent}}{dN^{pp}/dp_T}$$

 Note Q_{pPb} is not 1 in absence of nuclear effects

Centrality from 57 multiplicity in pPb

Using VOA amplitudes at forward rapidity
Toy Model: Glauber+Pythia

- Small dynamic range
- Several biases are present
 - Multiplicity bias
 - Jet veto bias
 - Geometrical bias
- Include (and indicate) bias in the definition

$$Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb} / dp_T \rangle_{cent}}{dN^{pp} / dp_T}$$

Note Q_{pPb} is not 1
in absence of nuclear effects

Forward neutron energy vs multiplicity

Correlation between forward neutron energy and multiplicity?

ALI-PERF-60996

Correlation of VOA and ZNA

VOA in ZNA slices
Convolution of
P(ZNA) x NBD(VOA)
Unfolded

Correlation of VOA and ZNA

ZN slicing +scaling of data (Hybrid Method) 61

- 1) Assume: ZN insensitive to dynamical biases → slice events in ZN
- 2) Assume scaling
 - a) Mid-rap dN/d η scales with N $_{part}$
 - b) Pb-side dN/d η scales with N_{part} target (= N_{coll} in pA)
 - c) Yield at high- p_{T} scales with N_{coll}

$$\langle N_{\text{part}} \rangle_{i}^{\text{mult}} = \langle N_{\text{part}} \rangle_{MB} \cdot \frac{\langle S \rangle_{i}}{\langle S \rangle_{MB}}$$
 $\langle N_{\text{coll}} \rangle_{i}^{\text{mult}} = \langle N_{\text{part}} \rangle_{i}^{\text{mult}} - 1$

$$\langle N_{\text{coll}} \rangle_{i}^{\text{Pb-side}} = \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle S \rangle_{i}}{\langle S \rangle_{MB}}$$

$$\langle N_{\text{coll}} \rangle_{i}^{\text{high-pt}} = \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle S \rangle_{i}}{\langle S \rangle_{MB}}$$

- All values within at most 10%
 - → consistency of assumptions
- This does not yet prove the validity of any (or all) of these assumptions

Charged particle QpPb

Hybrid method:

- \bullet Charged particle $\boldsymbol{Q}_{_{DPb}}$ consistent with unity at high $\boldsymbol{p}_{_{T}}$
- Cronin peak develops with multiplicity