First results from pPb collisions at the LHC

and the second second

CERN Prévessin Constantin Loizides (LBNL/EMMI)

15 May 2013

Multi-experiment talk

LHC 27 km

LHCP 2013: First Large Hadron Collider Physics Conference

Motivation for pPb at the LHC

- Study high-density QCD in saturation region
 - Saturation scale (Q_s) enhanced in nucleus ($\sim A^{1/3\lambda}$)
 - In perturbative regime at the LHC: $Q_s \sim 2-3$ GeV/c
 - Qualitatively expect $x \sim 10^{-4}$ at $\eta = 0$ (vs 0.01 at RHIC)
- Study pA as a benchmark for AA
 - Benchmark hard processes to disentangle initial from final state effects
 - Characterize nuclear PDFs at small-x
- Expect surprises
 - History of pA collisions (eg. see talk by W.Busza)
 - pA contains elements of both: pp and AA
- Other physics opportunities
 - Diffraction
 - Photo-nuclear excitation

Motivations summarized in JPG 39 (2012) 015010

Event multiplicity classes in pPb

- Correlation between collision geometry and multiplicity not as strong as in AA
- System also exhibits features of biased pp (NN) collisions in the multiplicity tails
- Complicates precise extraction of Glauber related quantities
 - Use minbias values instead $(\sigma_{pA} = A \sigma_{pp})$
- Define event classes by slicing various multiplicity related distributions
 - Every experiment uses its own selection and usually provides (corrected) multiplicity at mid-rapidity
 - Event class definition may matter for particular measurements
 - Systematic checks using different selections

Physics results from 2012 and 2013 runs 4

Charged particle pseudorapidity density 5

- Tracklet based analysis
 - Dominant systematic uncertainty from NSD normalization of 3.1%
- Reach of SPD extended to |η|<2 by extending the z-vertex range
- Results in ALICE laboratory system
 - $y_{cms} = -0.465$
- Comparison with models
 - Most models within 20%
 - Saturation models have too steep rise between p and Pb region
 - See for further comparisons Albacete et al., arXiv:1301.3395

NB: HIJING calculations are expected to increase by ~4% from INEL to NSD

ALICE, PRL 110 (2013) 032301

Nuclear modification factor in pPb vs PbPb 6

$$R_{AB} = \frac{\mathrm{d}N_{AB}/\mathrm{d}p_{\mathrm{T}}}{\langle N_{\mathrm{coll}}\rangle \mathrm{d}N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

- R_{pPb} (at mid-rapidity) consistent with unity for $p_T > 2 \text{ GeV/c}$
- High-p_T charged particles exhibit binary scaling
- Unlike in PbPb, no suppression at high p_{T} is observed
- Suppression at high p_T in PbPb is not an initial state effect

ALICE, PRL 110 (2013) 082302

Nuclear modification factor vs models

- Saturation (CGC) models:
 - Consistent with the data
 - Large uncertainties
- pQCD models with shadowing
 - Consistent with data
 - Tension at high p_T for LO+CNM model
- HIJING 2.1
 - With shadowing only matches at low p_T (see also dN/d η)
 - No shadowing better at high $p_{\scriptscriptstyle T}$
- Spectrum itself interesting
 - Neither HIJING nor DPMJET do describe the p-Pb p_T spectrum itself

NB: HJING calculations are expected to increase by ~4% from INEL to NSD

Werner et al., EPOS3 (Trento)

Measured spectra not described in low p_T region

• EPOS version 3

RpPb

- Gribov-Regge multiple scattering ansatz plus energy-momentum conservation with fixed scale breaks binary scaling
- Introduction of ladder-byladder dependent saturation scale restores

Measurements of dijet properties

Measurements of dijet properties 10

J/ψ double differential cross section 11

Total cross-sections:

Forward: $p_T < 14 \text{ GeV/c}$, **1**. **5** < **y** < **4**. **0**

 $\sigma_{pA}(prompt J/\psi) = 1028.2 \pm 13.6 (stat.) \pm 88.6 (syst.) \mu b$ $\sigma_{pA}(J/\psi from b) = 150.1 \pm 4.2 (stat.) \pm 12.6 (syst.) \mu b$

Backward: $p_T < 14 \text{ GeV/c}$, -5 < y < -2.5

 $\sigma_{Ap}(prompt J/\psi) = 1141.9 \pm 49.8 (stat.) \pm 98.4 (syst.) \mu b$ $\sigma_{Ap}(J/\psi from b) = 119.7 \pm 8.3 (stat.) \pm 10.0 (syst.) \mu b$ Systematic uncertainties dominated by luminosity, fit model and data-mc consistency

(See A. Rossi, Tuesday)

J/ψ nuclear modification factor

- R_{pPb} decreases towards forward y
- Uncertainty dominated by uncertainty of pp reference

 R_{pA} (2.03< y_{CMS} <3.53)= 0.732 ± 0.005(stat) ± 0.059(syst) + 0.131(syst. ref) - 0.101(syst.ref)

 R_{pA} (-4.46< y_{CMS} <-2.96)= 1.160 ± 0.010 (stat) ± 0.096(syst) + 0.296(syst. ref) - 0.198(syst.ref)

Inclusive J/psi, ALICE preliminary (Trento)

J/ψ nuclear modification factor

- R_{pPb} decreases towards forward y
- Uncertainty dominated by uncertainty of pp reference
- No apparent rapidity dependence in backward region

 R_{pA} (2.03< y_{CMS} <3.53)= 0.732 ± 0.005(stat) ± 0.059(syst) + 0.131(syst. ref) - 0.101(syst.ref)

 R_{pA} (-4.46< y_{CMS} <-2.96)= 1.160 ± 0.010 (stat) ± 0.096(syst) + 0.296(syst. ref) - 0.198(syst.ref)

Inclusive J/psi, ALICE preliminary (Trento)

J/ψ nuclear modification factor vs models 14

- R_{pPb} decreases towards forward y
- Uncertainty dominated by uncertainty of pp reference
- No apparent rapidity dependence in backward region

Inclusive J/psi, ALICE preliminary (Trento)

- Comparison with models
 - Good agreement with models incorporating shadowing (EPS09 NLO) and/or a contribution of coherent parton energy loss
 - CGC model (Fujii et al.) disfavored by the data
 - Rapidity dependence in backward region may provide additional constraints

Prompt vs inclusive J/ψ R_{pPb}

- Comparison between prompt and inclusive measurement
 - Central values for LHCb about 30% lower
 - Both measurements on-the-edge of being compatible within uncertainties
 - Understanding the difference is ongoing
 - Similar conclusions wrt the comparison with models

Forward-backward asymmetry

- Forward-to-backward ratio in common |y| ranges
 - Free of uncertainty from pp reference
 - Good agreement between prompt and inclusive measurement
- Models incorporating shadowing and energy loss consistent with data

Two-particle angular correlations

Extraction of double ridge structure 19

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - It has been verified that the 60-100% class is similar to pp
 - The near-side ridge is accompanied by an almost identical ridge structure on the away-side
 - Similar analysis strategy by ATLAS (arXiv:1212.5198)

Ridge v_2 and v_3

ALICE, PLB 719 (2013) 29 ATLAS, arXiv:1212.5198 د^{ی 0.20} ° p-Pb \ s_{NN} = 5.02 TeV ATLAS p+Pb V_n = 2 ۷₂ , $0.5 < p_{T,trig} < p_{T,assoc} < 1.0 \text{ GeV}/c$ n = 3 $.0 < p_{T,trig} < p_{T,assoc} < 2.0 \text{ GeV}/c$ 0.15 0.15 $2.0 < p_{T,trig} < p_{T,assoc} < 4.0 \text{ GeV}/c$ 0.1 0.10 $\Sigma E_T^{Pb} > 80 \text{ GeV}$ 0.05 0.05 $2 < |\Delta \eta| < 5$ 0.5<p_+^b<4 GeV 0 0.00 0-20% 20-40% 40-60% p_⊤a [GeV] 2 4 0 Event class ALI-PUB-46258

• Large values for v₂ and v₃ reached for high-multiplicity events

Ridge modulation v_2 and v_3 and CGC 21

Ridge modulation v_2 and v_3 and CGC 22

• However, a large v_3 component would be a challenge for the model

v_3 in PbPb and pPb

v_3 in PbPb and pPb

Multi-particle correlations in pPb: v_2 {4} 25

- Using four particle angular correlations subtracting those from two particles
- Genuine four particle correlations present in pPb
 - Turn-on at around M=50 offline tracks
 - Difference to ATLAS points at low M probably due to multiplicity fluctuations
 - Magnitude smaller than in PbPb

Multi-particle correlations in pPb: v_2 {4} 26

- Using four particle angular correlations subtracting those from two particles
- Genuine four particle correlations present in pPb
 - Turn-on at around M=50 offline tracks
 - Difference to ATLAS points at low M probably due to multiplicity fluctuations
 - Magnitude smaller than in PbPb
- Hydrodynamical predictions (4.4 TeV, arXiv:1112.0915) consistent with pPb data
- Higher order correlations not yet included in CGC glasma model

Identified particle spectra

Radial flow

$$p_T^{flow} = p_T + m \beta_T^{flow} \gamma_T^{flow}$$

Radial flow expected to be built up and reflected in spectra, in particular in p/π ratio

Shuryak and Zahed, arXiv:1301.4470

(see M. Floris, Tuesday)

Identified particle spectra

CMS-PAS-HIN-12-016

- Spectra measured in bins of multiplicity
 - For kaons and more for protons shape changes with increasing multiplicity

 $p_T^{flow} = p_T + m \beta_T^{flow} \gamma_T^{flow}$

Radial flow expected to be built up and reflected in spectra, in particular in p/π ratio

Shuryak and Zahed, arXiv:1301.4470

(see M. Floris, Tuesday)

Identified particle spectra

CMS-PAS-HIN-12-016

- Spectra measured in bins of multiplicity
 - For kaons and more for protons shape changes with increasing multiplicity
- Change is reflected in proton mean p_T
- Selected Monte Carlo models fail to describe the multiplicity dependence

- Ratio shows similar p_T dependence as observed in PbPb
 - Significant increase at intermediate with increasing VOA multiplicity
 - Corresponding significant depletion in the low- $p_{\scriptscriptstyle T}$ region
- Dependence in Pb-Pb usually explained by radial flow
 - Dependence in pPb qualitatively as expected by eg. Shuryak and Zahed, arXiv:1301.4470

Λ/K_{s}^{0} ratio versus p_{T}

ALICE preliminary (Trento)

- Clear evolution of \(\Lambda\)K⁰s ratio with increasing VOA multiplicity
- Also this is reminiscent of a similar trend observed in AA

Λ/K_{s}^{0} ratio versus p_{T}

- Clear evolution of A/K^o_s ratio with increasing VOA multiplicity
- Also this is reminiscent of a similar trend observed in AA
- In AA this is generally explained by collective flow and parton recombination

Which one have we seen?

Proton on lead collisions is like shooting a bullet through a glass

Color-Glass-Condensate in pPb

Saturation

Collectivity

33

(adapted from A. Rezaeian)

Werner et al., EPOS3 (Trento)

- EPOS version 3
 - Gribov-Regge multiple scattering ansatz plus energy-momentum conservation with fixed scale breaks binary scaling
 - Introduction of ladder-byladder dependent saturation scale restores binary scaling
 - Integration of 3D viscous hydrodynamics allows to also describe low-p_T region

Probably aspects of both!

Summary

35

3-001

- First measurements (Unidentified and identified spectra, J/psi, Dijet)
 - More work needed (eg. diffraction, fluctuations and centrality)

CMS

1 < p₊ < 3 Ge

1.8 <u>N^{trig} dΔη dΔφ</u> 1.7 9.1

- Two-particle correlation and PID results imply interesting debate of the role of initial and final state effects in pPb
 - More experimental results needed (eg. identified v_2 , HBT, R_{pPb} vs cent.)
- Thanks to LHC for a very successful 2013 pPb run, and to the collaborations for providing beautiful results so quickly

Extra

LHC pPb runs at 5.02 TeV

- LHC operated with
 - 4 TeV proton beam and 1.57 TeV / nucleon Pb beam
 - Center of mass energy 5.02 TeV per nucleon pair
 - Center of mass per nucleon pair rapidity shift dY = 0.465 in direction of proton
- 2012 pilot run (4 hours of data taking)
 - About 1/µb per experiment with very low pileup
- 2013 long run (3 weeks of data taking)
 - Delivered about 30/nb to ATLAS, CMS and ALICE
 - ALICE recorded also about 50/µb with μ <0.003 (for the rest μ <0.05) (check numbers)
 - Few 1/nb for LHCb (new to heavy-ion operation)
 - Beam reversal (relevant for ALICE and LHCb) for about half of statistics
 - Van der Meer scans in both beam configuations
- No pp reference data available at 5.02 TeV
 - Use scaled results pp collisions at 2.76, 7 and 8 TeV and/or models

Inelastic pPb cross section

- Count collisions which produce at least one track in $2.5 < \eta < 4.5$ (proton side) with $p_T > 0.2$ GeV/c
 - In HIJING/DPMJET only 1-2% events without a charged particle
- Analysis steps
 - Beam gas subtraction
 - Pileup below permille level ignored
 - Trigger efficiency 100% ±1%
 - Correction for finite single track finding efficiency: 98% ± 2%
 - Convert using integrated luminosity measured with SMOG
 - Systematic uncertainty dominated by 5.2% error on luminosity

 $\sigma_{inel}(2.5 < \eta_{cm} < 4.5, \ p_T > 0.2 \, {
m GeV}/c) = 2.09 \pm 0.12 \, {
m b}$

(consistent with HIJING, DPMJET and Glauber with σ_{NN} =70mb)

LHCb, CERN-LHCb-CONF-2012-034

NSD pPb normalization

- Event selection
 - VZERO-A (2.8< η <5.1) and VZERO-C (-3.7< η <-1.7) incl. time cuts
 - Systematic variation using ZDC on nucleus side (ZNA)
- Resulting event sample
 - Non single-diffractive (NSD)
 - At least one binary N+N interaction is NSD (Glauber picture)
 - Inspired from DPMJET, which includes incoherent SD of the projectile with target nucleons that are mainly concentrated on the surface of the nucleus
 - SD about 4% from HIJING, DPMJET or standalone Glauber
 - Negligible contamination from SD and EM processes
- Validated with a cocktail of generators
 - DPMJET for NSD (2b)
 - PHOJET + Glauber for incoherent SD part (0.1b)
 - SD/INEL = 0.2 in pp at 7 TeV (arXiv:1208.4968)
 - EM with STARLIGHT (0.1-0.2b)

Pseudorapidity density at midrapidity 44

- Measurement (tracklet based)
 - $dN/d\eta = 16.81 \pm 0.71$ (syst)
 - Converted into centre-of-mass system using HIJING
 - Dominant uncertainty from NSD normalization of 3.1%
- Glauber model for pPb
 - With σ_{INEL} = 70 ± 5 mb
 - <Npart> = 7.9 ± 0.6 (syst)
- Participant scaled value
 - $(dN/d\eta)/\langle Npart \rangle = 2.14 \pm 0.17$ (syst)
 - About 15% below NSD pp
 - Similar to pp INEL
- Inelastic pPb would be 4% lower (estimate from models)

Cronin effect at RHIC and LHC

$$R_{AB} = \frac{\mathrm{d}N_{AB}/\mathrm{d}p_{\mathrm{T}}}{\langle N_{\mathrm{coll}}\rangle \mathrm{d}N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

- R_{AB} > 1 at intermediate p_T observed in dAu collisions at RHIC typically attributed to Cronin effect
- No enhancement seen in pPb at the LHC
- No Cronin effect?

ALICE, PRL 110 (2013) 082302

STAR, PRL 91 (2003) 072304

Cronin effect at SPS

 Reminder from SPS energies: RAB ≈ 1 does not necessarily imply absence of effects

NA49, NPA 783 (2007) 65 WA98, PRL 89 (2002) 252301

• Model comparisons are required to understand R_{pPb} at the LHC

J/ψ production

- Extraction of prompt J/psi and J/psi from b decays using simultaneous fit of mass and pseudo-proper time
- Obtain (total) cross sections
 - Forward: 1.5<y<4.0 (0.75/nb)
 - Backward: -5.0<y<-2.5 (0.3/nb)
 - p_T<14 GeV/c

- Extraction of inclusive J/psi using Crystal Ball as signal and exponential plus polynomial as background
- Obtain invariant yields
 - Forward: 2.03<y<3.53 (~4.9/nb)
 - Backward: -4.46<y<-2.96 (~5.5/nb)
 - p_T<15 GeV/c

J/ψ interpolated pp reference

- Linear interpolation to obtain prompt J/psi cross section in pp at 5.02 TeV
- Clear suppression in pPb, while moderate in Pbp

LHCb and ALICE interpolations are consistent within large uncertainties. Need pp reference run at 5.02 TeV!

- Interpolation between RHIC, CDF and LHC data based on phenomenological shape for the inclusive J/psi cross section
 - dσ/dy=3.85±0.68 μb⁻¹ (2.03<y<3.53)
 - dσ/dy=2.65±0.66 μb⁻¹ (-4.46<y<-2.96)
- Consistent with FONLL and CEM

Forward-backward asymmetry

Inclusive J/psi, ALICE preliminary (Trento)

- Forward-to-backward ratio in the range 2.96<|y|<3.53
 - $R_{FB} = 0.60 \pm 0.01 \text{ (stat)} \pm 0.06 \text{ (syst)}$
 - Free of uncertainty from pp reference
- Pure saturation models seem to overestimate the ratio

Forward-backward asymmetry

- p_⊤ dependence of forward-to-backward ratio in common 2.96<|y|<3.53
 - Ratio increases with increasing $p_{\scriptscriptstyle T}$
 - Provides additional constraints for models

DHC: Correlation measure

ALICE, PLB 719 (2013) 29

 Associated yield per trigger particle (with p_T^{trig}>p_T^{assoc})

 $\frac{1}{N_{\rm trig}}\frac{{\rm d}^2N_{\rm assoc}}{{\rm d}\Delta\eta\;{\rm d}\Delta\varphi}=\frac{S\left(\Delta\eta,\Delta\varphi\right)}{B\left(\Delta\eta,\Delta\varphi\right)}$

• Signal (same event) pair yield

$$S\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{N_{\rm trig}} \frac{{\rm d}^2 N_{\rm same}}{{\rm d}\Delta\eta\,{\rm d}\Delta\varphi}$$

• Definition as ratio of sums is multiplicity independent

$$\frac{N_{pair}}{N_{trig}} = \frac{\sum_{i=1}^{N_{evt}} \sum_{j=1}^{N_{source}} \frac{1}{2} n_{ij}(n_{ij}-1)}{\sum_{i=1}^{N_{evt}} \sum_{j=1}^{N_{source}} n_{ij}}$$
$$= \frac{N_{evt} \langle N_{source} \rangle \frac{1}{2} \langle n(n-1) \rangle}{N_{evt} \langle N_{source} \rangle \langle n \rangle}$$
$$= \frac{1}{2} \frac{\langle n(n-1) \rangle}{\langle n \rangle}$$

Background (mixed event) pair yield

$$B\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{B\left(0,0\right)} \frac{\mathrm{d}^2 N_{\mathrm{mixed}}}{\mathrm{d}\Delta\eta\,\mathrm{d}\Delta\varphi}$$

ALI-PUB-46224

DHC: Multiplicity dependence

ALICE, PLB 719 (2013) 29

- Compare associated yield in pPb multiplicity classes and pp
 - Project to $\Delta \phi$ over $|\Delta \eta| < 1.8$
 - Subtract baseline at $\Delta \phi \sim 1.3$
- Low multiplicity pPb is similar to pp (at 7 TeV)
- Yield rises on near and away side with increasing multiplicity
- In contrast with away-side suppression observed in dAu at RHIC at forward η (similar x)

DHC: Two ridges

ALICE, PLB 719 (2013) 29

- A residual jet peak at (0,0) remains even after subtraction of 60-100% from the 0-20% multiplicity class
- Compare effects using different event class definition

DHC: Selection bias on fragmentation (pp) 58

- By selecting on multiplicity, jet fragmentation is biased towards higher number of fragmenting products
- Competition between higher number of MPI and fragmentation

Extraction of double ridge structure 59

ATLAS, arXiv:1212.5198

- Similar two ridge structures also observed by ATLAS
 - Event multiplicity classes defined by sum of transverse energy $(3.1 < \eta < 4.9)$ on the Pb nucleus side
 - Here, the jet peak at (0,0) remains even after subtraction of 50-100% from the 0-2% multiplicity class

DHC: Ridge yields

Integrate two ridges above baseline on the

- Near side ($|\Delta| < \pi/2$)
- Away side $(\pi/2 < |\Delta| < 3\pi/2)$
- Near and away-side ridge yields
 - Change significantly
 - Agree for all p_T and multiplicity ranges
 - Increase with trigger p_{T} and multiplicity
 - Widths are approximately the same (not shown)
- The correlation between nearand away-side yields suggests a common underlying origin

Ridge v_2 and v_3 and hydrodynamics 63

ATLAS, arXiv:1212.5198 ATLAS p+Pb V_n = 2 n = 30.15 0.1 $\Sigma E_T^{Pb} > 80 \text{ GeV}$ 0.05 2<|Δη|<5 0.5<p_+^b<4 GeV p_{T}^{a} [GeV] 2 0 4

- Large values for v₂ and v₃ reached for high-multiplicity events
- Results are roughly consistent with viscous hydrodynamic calculations
 - Calculations in pPb less robust wrt changes of assumptions than in AA

Bozek and Broniowski, arXiv:1304.3044

DHC: Symmetric ridge

ALICE, PLB 719 (2013) 29

- What would the assumption of a symmetric ridge give?
 - Determine the near-side ridge in $1.2 < |\Delta\eta| < 1.8$
 - Mirror to away-side and subtract

No significant other multiplicity dependent structures left over

Multi-particle correlations in PbPb: v₂{4} 66

<

- Cumulants to extract genuine k-particle correlations excluding those from k-1 particles
- Higher order cumulants successfully used in PbPb
- Definitions for k=2 and k=4
 - $v_2 \{2\}^2 = \langle v_2 \rangle^2 + \sigma_{v_2}^2 + \delta_2$ $v_2 \gg 1/\sqrt{M}$
 - $v_2 \{4\}^2 = \langle v_2 \rangle^2 \sigma_{v_2}^2$ $v_2 \gg 1/M^{3/4}$
 - eg. M=100, v₂>>0.03
 - Care is needed when averaging over M, as cumulants are also sensitive to multiplicity fluctuations

M=<N_{ch}> \approx 100 in |η|<1

Multi-particle correlations in pPb 67

- Second and fourth order cumulant extracted
 - Second order above HIJING as expected if additional correlations present

<N_{ch}>≈100

- Fourth order has different trend than HIJING
 - In high-multiplicity region there are four or higher particle correlations not present in HIJING

Correlation function p_T dependence

v_2 in PbPb and pPb

70

Similar shape of v_2 in pPb and PbPb but with smaller magnitude

Integrated v₂ in PbPb and pPb

CMS, arXiv:1305.0609

71

 v_2 in pPb is smaller than in PbPb

v_3 in PbPb and pPb

Similar shape and magnitude of v_3 in pPb and PbPb

Identified particle spectra and ratios 73

Use template fits to energy loss at |y|<1

- Pions (0.1 GeV/c < p <1.2 GeV/c)
- Kaons (0.2 GeV/c < p < 1.05 GeV/c)
- Protons (0.4 GeV/c

- Generators exhibit too steep p_T dependence
- Significant deviations in particular for the p/π ratio.

Identified particle p_T spectra

K/ π ratio versus p_T

ALICE preliminary (Trento) pp 1/s = 7 TeV pp (s = 7 TeV pp (s = 7 TeV 0. ALICE, arxiv:1303.0737 <u>ب</u> p-Pb (60-80%) p-Pb (40-60%) p-Pb (20-40%) ALICE $\hat{\mathbf{x}}_{0}^{0}$ ∑ 0. ∑ 0. + + pp Vs = 7 TeV op √s = 7 TeV 0. £ 0.8 ٥ ځ <u>ل</u>ے 0. ALICE Ph-Ph (80-90% Ph-Ph (70-80% $\widehat{\mathbf{Y}}_{0,0}^{0,1}$ $\tilde{\mathbf{Y}}_{0}^{0}$ $\hat{\boldsymbol{\varsigma}}_{0}^{0}$ 0 0.3 0.3 0.2 V0A multiplicity 0 0 p-Pb Vs_N = 5.02 TeV 0_ò 0 2.5 3 3.5 1.5 2 2.5 0.5 **pPb**^{p, (GeV/c)} 0.5 2.5 0.5 3 15 2 1.5 2 3 1.5 2 2.5 3 3.5 15 2 25 3 35 0.5 1.5 2 2.5 3 3.5 *р*_т (GeV/*c*) p_ (GeV/c) PbPb^(GeV/c) p_{_} (GeV/c) p_ (GeV/c) pp 1/s = 7 Te\ pp (s = 7 TeV pp **\s** = 7 TeV pp vs = 7 TeV te 0.1 te 0 tg 0. + 0.9 Pb-Pb (50-60%) Pb-Pb (30-40%) Pb-Pb (0-5%) $\widehat{\mathbf{G}}_{0,0}^{0,1}$ $\widehat{\mathbf{v}}_{0,0}^{0.7}$ $\tilde{\varsigma}_{0}^{0}$ ું દુ ંદ્વ 0. p-Pb (5-10%) p-Pb (0-5%) p-Pb (10-20%) 0 $\overline{\Sigma}_{0}$ Σ_0^{0}

Systematic errors are largely correlated across multiplicity

p_ (GeV/c)

3

2.5

2

0.5

1.5

2.5

p_ (GeV/c)

0.5

p_ (GeV/c)

weak evolution with multiplicity in p-Pb

+

0.3

0.2

0

0.5

ਸ਼ੂ 0.

 $\hat{\mathbf{Y}}_{0}^{0}$

ું સુ 0.

 Σ_0

1.5

2

0.5 1

2.5

3

p_ (GeV/c)

+

0.

0.2

0

0.5 1

1.5

2.5

3 3.5

p_{_} (GeV/*c*)

2

 \rightarrow small increase at intermediate $p_{_{\rm T}}$ with increasing V0A multiplicity

1.5

1

- \rightarrow corresponding small depletion in the low-p_ region
- hints at similar behavior as observed in Pb-Pb collisions

p_ (GeV/c)

p/π ratio versus p_T

Systematic errors are largely correlated across multiplicity

- shows similar behavior as observed in Pb-Pb collisions
- \rightarrow significant increase at intermediate p_{τ} with increasing VOA multiplicity
- \rightarrow corresponding significant depletion in the low- $p_{_{\rm T}}$ region
- \rightarrow stronger enhancement than K/ $\!\pi$
- Pb-Pb generally understood in terms of collective flow and/or recombination

Λ/K_{s}^{0} ratio versus p_{T}

78

Systematic errors are largely correlated across multiplicity

- clear evolution with multiplicity in pPb
- \rightarrow significant increase at intermediate $\textbf{p}_{_{T}}$ with increasing V0A multiplicity
- \rightarrow corresponding significant depletion in the low-p_{_{T}} region
- also this is <u>reminiscent of nucleus-nucleus phenomenology</u>...
- ...generally understood in terms of collective flow and/or recombination

Spectra shape analysis: pPb

Spectra shape analysis: pp

Spectra shape analysis: PbPb

ALICE, arxiv:1303.0737

Global Blast-Wave fit parameters

82

▷ p-Pb presents similar features as observed in Pb-Pb → parameters evolve with increasing multiplicity: larger ⟨β_T⟩, smaller T_{fo} → T_{fo} is similar to Pb-Pb for similar multiplicity, ⟨β_T⟩ is larger in p-Pb

> same results when including also Λ and K_{s}^{0} in the p-Pb global fit

Global Blast-Wave fit parameters

Comparison with hydrodynamical model 84

