

First proton-lead results from ALICE

Constantin Loizides (LBNL/EMMI) on behalf of the ALICE collaboration

06 June 2013

Motivation

- Study high-density QCD in saturation region
 - Saturation scale (Q_s) enhanced in nucleus ($Q_s^2 \sim A^{1/3\lambda}$)
 - In perturbative regime at the LHC: $Q_s^2 \sim 2-3 \text{ GeV}^2$
 - Qualitatively expect $x \sim 10^{-4}$ at $\eta = 0$ (vs 0.01 at RHIC)
- Study pA as a benchmark for AA
 - Disentangle initial from final state effects
 - Characterize nuclear PDFs at small-x
- Expect surprises
 - pA contains elements of both: pp and AA
- Other physics opportunities
 - Diffraction
 - Photo-nuclear excitation

Motivations summarized in JPG 39 (2012) 015010

The ALICE detector

Event multiplicity classes

- Correlation between collision geometry and multiplicity not as strong as in AA
- System also exhibits features of biased pp (NN) collisions in the multiplicity tails
- Complicates precise extraction of Glauber related quantities
 - Use minbias instead $(\sigma_{pA} = A \sigma_{pp})$
- Define event classes by slicing various multiplicity related distributions
 - Every experiment uses its own selection and usually provides (corrected) multiplicity at mid-rapidity
 - Forward multiplicity/energy on Pb side
 - Event class definition may matter for particular measurements
 - Systematics using different selections

ALICE pPb results

ALICE, PRL 110 (2013) 032301

ALICE preliminary e^d 1.4 p-Pb $\sqrt{s_{max}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow \mu^+\mu^-$, p >0 ALICE 0.8 0.6 0.4 EPS09 NLO (Vogt, arXiv:1301.3395 and priv.comm.) CGC (Fuili et al. arXiv:1304.2221) 02 ELoss with q =0.075 GeV²/fm (Arleo et al., arXiv:1212.0434) - EPS09 NLO + ELoss with q_=0.055 GeV²/fm (Arleo et al., arXiv:1212.0434) -2 -1 0 2 3

ALICE, PLB 719 (2013) 29

ALICE preliminary

ALI-DER-48480

Charged particle pseudorapidity density 6

- Tracklet based analysis
 - Dominant systematic uncertainty from NSD normalization of 3.1%
- Reach of SPD extended to |η|<2 by extending the z-vertex range
- Results in ALICE laboratory system
 - $y_{cms} = -0.465$
- Comparison with models
 - Most models within 20%
 - Saturation models have too steep rise between p and Pb region
 - See for further comparisons Albacete et al., arXiv:1301.3395

NB: HIJING calculations are expected to increase by ~4% from INEL to NSD

ALICE, PRL 110 (2013) 032301

Charged particle spectra in bins of η

- Primary charged tracks (3 η bins)
 - Reconstructed in ITS+TPC ($|\eta| < 0.8$)
 - Use $\eta_{cms} = \eta_{lab} y_{cms}$, then correct
 - Systematic uncertainty: 5.2-7.1%
 - NSD normalization: 3.1 %
- Hint for slightly softer spectrum at higher η (Pb side)?
- Reference constructed from pp (INEL) data at 2.76 and 7 TeV
 - Interpolation below 5 GeV/c, and above scaled by factor obtained from NLO calculation
 - Systematic uncertainty: 8%
 - Normalization uncertainty: 3.6%
 - $< T_{pPb} > = 0.0983 \pm 0.0035 \text{ mb}^{-1}$ from Glauber model

Nuclear modification factor pPb vs PbPb 8

$$R_{AB} = \frac{\mathrm{d}N_{AB}/\mathrm{d}p_{\mathrm{T}}}{\langle N_{\mathrm{coll}}\rangle \mathrm{d}N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

- R_{pPb} (at mid-rapidity) consistent with unity for $p_T > 2 \text{ GeV/c}$
- High-p_T charged particles exhibit binary scaling
- Unlike in PbPb, no suppression at high p_{T} is observed
- Suppression at high p_T in PbPb is not an initial state effect

ALICE, PRL 110 (2013) 082302

Nuclear modification factor vs models

- Saturation (CGC) models:
 - Consistent with the data
 - Large uncertainties
- pQCD models with shadowing
 - Consistent with data
 - Tension at high p_T for LO+CNM model
- HIJING 2.1
 - With shadowing only matches at very low p_T (see also dN/d η)
 - No shadowing better at high p_{T}
- Spectrum itself interesting
 - Neither HIJING nor DPMJET do describe the pPb p_{T} spectrum itself

NB: HJING calculations are expected to increase by ~4% from INEL to NSD

J/ψ nuclear modification factor vs models 10

- R_{pPb} decreases towards forward y
- Uncertainty dominated by uncertainty of pp reference
- No apparent rapidity dependence in backward region

Inclusive J/psi, ALICE preliminary

- Comparison with models
 - Good agreement with models incorporating shadowing (EPS09 NLO) and/or a contribution of coherent parton energy loss
 - CGC model (Fujii et al.) disfavored by the data
 - Rapidity dependence in backward region may provide additional constraints

J/ψ forward-backward asymmetry

- Forward-to-backward ratio in common |y| ranges
 - Free of uncertainty from pp reference
- Models incorporating shadowing and energy loss consistent with data
 - p_T dependence provides additional constraints for models

Di-Hadron Correlations (DHC)

- CMS: pp, pPb at LHC
 - Long-range near-side correlations (ridge) appear at high-multiplicity
 - Collective effects in pp and pPb?
 - CGC initial state effects?

12

- STAR: dAu at RHIC
 - Back-to-back (jet-like) correlations in forward π⁰ correlations disappear in high-multiplicity events
 - Compatible with CGC predictions
- LHC mid- and RHIC forward-η probe a similar x regime

STAR, arXiv:1005.2378

DHC: Extraction of double ridge structure 13

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - It has been verified that the 60-100% class is similar to pp
 - The near-side ridge is accompanied by an almost identical ridge structure on the away-side

DHC: Ridge yields

Integrate two ridges above baseline on the

- Near side ($|\Delta \phi| < \pi/2$)
- Away side $(\pi/2 < |\Delta \phi| < 3\pi/2)$
- Near and away-side ridge yields
 - Change significantly
 - Agree for all p_T and multiplicity ranges
 - Increase with trigger p_{T} and multiplicity
 - Widths are approximately the same (not shown)
- The correlation between nearand away-side yields suggests a common underlying origin

DHC: Ridge v_2 and v_3 and Hydro

- Obtain $v_n = \sqrt{(a_n/b)}$ from $a_0 + 2a_2\cos(2\Delta\phi) + 2a_3\cos(3\Delta\phi)$ fit where b is baseline in higher multiplicity class
 - v_2 increases strongly with p_T and mildly with multiplicity
 - v_3 increases with p_T within large uncertainties
 - The p_{τ} dependences are in qualitative agreement with hydrodynamical predictions

ALICE, PLB 719 (2013) 29

DHC: Ridge v_2 and v_3 and CGC

16

• However, a large v_3 component may be a challenge for the model

Identified particle p_T spectra

Average p_T vs $dN_{ch}/d\eta$ in pPb

ALICE preliminary

- Average p_T increases with multiplicity in all VOA multiplicity classes
- Mass ordering: Larger mass also larger average $p_{\scriptscriptstyle T}$
- Generators implementing incoherent superposition of nucleon collisions do not describe the data (not shown)

Proton-to-pion ratio

- Ratio in 0-5% shows similar p_T dependence as observed in peripheral PbPb
 - Significant increase at intermediate p_T with increasing VOA multiplicity
 - Corresponding significant depletion in the low- p_{τ} region
- Dependence in PbPb usually explained by radial flow
 - Dependence in pPb qualitatively as expected by eg. Shuryak and Zahed, arXiv:1301.4470

Λ/K_{s}^{0} ratio versus p_{T}

- Clear evolution of A/K⁰_s ratio with increasing VOA multiplicity
- Also this is reminiscent of a similar trend observed in AA
- In AA this is generally explained by collective flow and parton recombination

Summary & Outlook

- Measurements of unidentified $dN/d\eta$ and dN/dp_T spectra
 - Various models describe data, but no single model describes all aspects
- Measurements of J/ψ spectra
 - Data can be described by model including shadowing plus energy loss
- Correlation analyses in pA started fundamental debate of initial and final state effects in high-multiplicity events
 - We may see aspects of both
- PID spectra at high multiplicity show trends also observed in peripheral PbPb and qualitatively consistent with radial flow
 - Similar trends also expected for high multiplicity pp events (Analysis of 7 TeV pp data ongoing)
- Further pPb measurements expected soon
 - Identified particle v2
 - HBT radii

Extra

NSD pPb normalization

- Event selection
 - VZERO-A (2.8<η<5.1) and VZERO-C (-3.7<η<-1.7) incl. time cuts
 - Systematic variation using ZDC on nucleus side (ZNA)
- Resulting event sample
 - Non single-diffractive (NSD)
 - At least one binary N+N interaction is NSD (Glauber picture)
 - Inspired from DPMJET, which includes incoherent SD of the projectile with target nucleons that are mainly concentrated on the surface of the nucleus
 - SD about 4% from HIJING, DPMJET or standalone Glauber
 - Negligible contamination from SD and EM processes
- Validated with a cocktail of generators
 - DPMJET for NSD (2b)
 - PHOJET + Glauber for incoherent SD part (0.1b)
 - SD/INEL = 0.2 in pp at 7 TeV (arXiv:1208.4968)
 - EM with STARLIGHT (0.1-0.2b)

Forward-backward asymmetry

Inclusive J/psi, ALICE preliminary p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}, L_{\text{Forward y}} (L_{\text{Backward y}}) \approx 4.9 (5.5) \text{ nb}^{-1}$ Inclusive J/ $\psi \rightarrow \mu^{+}\mu^{-}$, 2.96 < $|y_{cms}|$ < 3.53, p_{τ} > 0 ALICE Preliminary EPS09 NLO (R. Vogt, arXiv:1301.3395 and priv. comm.) EPS09 LO, shadowing and EMC min./max. (J.P. Lansberg, priv. comm.) nDSG LO (J.P. Lansberg, priv. comm.) EPS09 NLO and ELoss with q_=0.055 GeV²/fm (F. Arleo et al., arXiv:1212.0434 and priv. comm.) ELoss with q_=0.075 GeV²/fm (F. Arleo et al., arXiv:1212.0434) 0.4 0.6 0.8 1.2 1.4 1.6 R_{FB} ALI-PREL-48386

- Forward-to-backward ratio in the range 2.96<|y|<3.53
 - R_{FB} = 0.60 ± 0.01 (stat) ± 0.06 (syst)
 - Free of uncertainty from pp reference
- Pure saturation models seem to overestimate the ratio

DHC: Multiplicity classes

- Correlation between geometry and multiplicity in pA is not as strong as in AA
 - System also shows features of biased pp (NN) collisions in the low and high multiplicity tails
- Define multiplicity classes
 - Use charge in VZERO to avoid correlation with tracks in barrel
 - V0M: sum of amplitudes from
 - VZERO-A (2.8<η<5.1)
 - VZERO-C (-3.7<η<-1.7)
- Systematic checks using
 - SPD (|η|<1.4)
 - ZNA (beam neutron on Pb side)

Event	V0M range	$\left<\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\right> _{ \eta <0.5}$	$\langle N_{\rm trk} \rangle _{ \eta < 1.2}$
class	(a.u.)	$p_{\rm T} > 0 {\rm GeV}/c$	$p_{\rm T} > 0.5 {\rm GeV}/c$
60-100%	< 138	6.6 ± 0.2	6.4 ± 0.2
40-60%	138-216	16.2 ± 0.4	16.9 ± 0.6
20-40%	216-318	23.7 ± 0.5	26.1 ± 0.9
0-20%	> 318	34.9 ± 0.5	42.5 ± 1.5

ALICE, PLB 719 (2013) 29

DHC: Multiplicity dependence

ALICE, PLB 719 (2013) 29

- Compare associated yield in pPb multiplicity classes and pp
 - Project to $\Delta \phi$ over $|\Delta \eta| < 1.8$
 - Subtract baseline at $\Delta \phi \sim 1.3$
- Low multiplicity pPb is similar to pp (at 7 TeV)
- Yield rises on near and away side with increasing multiplicity
- In contrast with away-side suppression observed in dAu at RHIC at forward η (similar x)

DHC: Correlation measure

ALICE, PLB 719 (2013) 29

 Associated yield per trigger particle (with p_T^{trig}>p_T^{assoc})

 $\frac{1}{N_{\rm trig}}\frac{{\rm d}^2N_{\rm assoc}}{{\rm d}\Delta\eta\;{\rm d}\Delta\varphi}=\frac{S\left(\Delta\eta,\Delta\varphi\right)}{B\left(\Delta\eta,\Delta\varphi\right)}$

• Signal (same event) pair yield

$$S\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{N_{\rm trig}} \frac{\mathrm{d}^2 N_{\rm same}}{\mathrm{d}\Delta\eta\,\mathrm{d}\Delta\varphi}$$

• Definition as ratio of sums is multiplicity independent

$$\frac{N_{pair}}{N_{trig}} = \frac{\sum_{i=1}^{N_{evt}} \sum_{j=1}^{N_{source}} \frac{1}{2} n_{ij}(n_{ij}-1)}{\sum_{i=1}^{N_{evt}} \sum_{j=1}^{N_{source}} n_{ij}}$$
$$= \frac{N_{evt} \langle N_{source} \rangle \frac{1}{2} \langle n(n-1) \rangle}{N_{evt} \langle N_{source} \rangle \langle n \rangle}$$
$$= \frac{1}{2} \frac{\langle n(n-1) \rangle}{\langle n \rangle}$$

Background (mixed event) pair yield

$$B\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{B\left(0,0\right)} \frac{\mathrm{d}^2 N_{\mathrm{mixed}}}{\mathrm{d}\Delta\eta\,\mathrm{d}\Delta\varphi}$$

ALI-PUB-46224

DHC: Two ridges

ALICE, PLB 719 (2013) 29

- A residual jet peak at (0,0) remains even after subtraction of 60-100% from the 0-20% multiplicity class
- Compare effects using different event class definition

DHC: Selection bias on fragmentation (pp) 29

- By selecting on multiplicity, jet fragmentation is biased towards higher number of fragmenting products
- Competition between higher number of MPI and fragmentation

DHC: Symmetric ridge

ALICE, PLB 719 (2013) 29

- What would the assumption of a symmetric ridge give?
 - Determine the near-side ridge in $1.2 < |\Delta\eta| < 1.8$
 - Mirror to away-side and subtract

No significant other multiplicity dependent structures left over

K/ π ratio versus p_T

31

pp 1/s = 7 TeV pp (s = 7 TeV pp (s = 7 TeV 0. ALICE, arxiv:1303.0737 ੈਂਦ 0. ŧ p-Pb (60-80%) p-Pb (40-60%) p-Pb (20-40%) ALICE $\widehat{\mathbf{Y}}_{0}^{0}$) 0. (Y 0. + ∑ 0. ∑ 0. + pp vs = 7 TeV op √s = 7 TeV 0. 0. £ 0.8 ٥ ځ <u>ل</u>ے 0. Ł ALICE Ph-Ph (80-90% Ph-Ph (70-80% $\widehat{\mathbf{Y}}_{0,0}^{0,1}$ $\tilde{\mathbf{Y}}_{0}^{0}$ $\hat{\boldsymbol{\varsigma}}_{0}^{0}$ 0.3 0.3 0.3 0.2 V0A multiplicity 0 0 p-Pb Vs_N = 5.02 TeV 0_ò 0 2.5 3 3.5 1.5 2 2.5 0.5 **pPb**^{*p*_T (GeV/*c*)} 0.5 2.5 0.5 3 15 2 1.5 2 3 1.5 2 2.5 3 3.5 15 2 25 3 35 0.5 1.5 2 2.5 3 3.5 *р*_т (GeV/*c*) p₊ (GeV/c) Pb-Pb p_{_} (GeV/c) p_ (GeV/c) pp 1/s = 7 Te\ pp (s = 7 TeV pp **\s** = 7 TeV pp vs = 7 TeV £ 0.8 te 0 <u>ب</u>ל 0.8 + 0.9 Pb-Pb (50-60%) Pb-Pb (30-40%) Pb-Pb (0-5%) $\widehat{\mathbf{G}}_{0,0}^{0,1}$ $\overrightarrow{\mathbf{G}}_{0,0}^{0.7}$ $\tilde{\varsigma}_{0}^{0}$ ંદ્વ 0. ું દુ ંદ્વ 0. p-Pb (5-10%) p-Pb (0-5%) p-Pb (10-20%) -0 $\overline{\mathcal{L}}_{0}$ $\widehat{\mathbf{Y}}_{0}$ Σ_0^0 + + 0.5 1.5 2.5 0.5 0. 0.3 p_ (GeV/c) p_ (GeV/c) p_ (GeV/c) 0.2 0.2 0^E **و** 0 1.5 2.5 1.5 2.5 1.5 2.5 0.5 1 2 3 0.5 1 2 3 3.5 0.5 1 2 3 p_{_} (GeV/*c*) *p*_ (GeV/*c*) p_ (GeV/c)

ALICE preliminary

Systematic errors are largely correlated across multiplicity

- weak evolution with multiplicity in p-Pb
- \rightarrow small increase at intermediate $p_{_{\rm T}}$ with increasing V0A multiplicity
- \rightarrow corresponding small depletion in the low-p_ region
- hints at similar behavior as observed in Pb-Pb collisions

p/π ratio versus p_T

pp (s = 7 TeV pp (s = 7 TeV pp (s = 7 TeV ALICE, arxiv:1303.0737 'ਸ 0 p-Pb (60-80%) p-Pb (40-60%) p-Pb (20-40%) ALICE ∕(**id**+0.) d â pp \s = 7 TeV <u>a</u> 0. <u>0</u>0 <u>0</u>0 ±0.8 ±.(±_0. ALICE Ph-Ph (80-90% > 0.1 □ 0.1 ⁰.
 ⁰ ñ 0 0.3 <u>a</u>0 0.0 0.3 0.2 V0A multiplicity 0 0 p-Pb Vs.... = 5.02 TeV 00 0 Pb-Pb vs_{NN} = 2.76 TeV 0.5 1.5 2 2.5 0.5 2.5 0.5 pPb^p(GeV/c) 2 3 15 2 25 3 1 1.5 2 2.5 3 3.5 15 2 25 3 35 0.5 1 15 2 25 3 p_ (GeV/c) p_ (GeV/c) Pb-Pb p_ (GeV/c) p_ (GeV/c) pp (s = 7 TeV pp **\s** = 7 TeV pp ****s = 7 TeV ____0.8 _____0.7 i.0 ع ⁺в 0. - Pb-Pb (0-5%) Pb-Pb (50-60% Ø p-Pb (5-10%) p-Pb (0-5%) p-Pb (10-20%) **D**O Ô **D** 0.5 0.5 p_ (GeV/c) p_ (GeV/c) p_ (GeV/c) 0.3 0 : 0**Ľ** 2.5 1.5 0 1.5 2.5 0.5 1.5 2 3 0.5 1 2 2.5 3 0.5 2 3 1 1 *p*_ (GeV/*c*) p_ (GeV/c) p_ (GeV/c)

Systematic errors are largely correlated across multiplicity

- shows similar behavior as observed in Pb-Pb collisions
- \rightarrow significant increase at intermediate p_{τ} with increasing VOA multiplicity
- \rightarrow corresponding significant depletion in the low- $p_{_{\rm T}}$ region
- \rightarrow stronger enhancement than K/ $\!\pi$
- Pb-Pb generally understood in terms of collective flow and/or recombination

ALICE preliminary

Λ/K_{s}^{0} ratio versus p_{T}

33

ALICE preliminary

Systematic errors are largely correlated across multiplicity

- clear evolution with multiplicity in pPb
- \rightarrow significant increase at intermediate $\textbf{p}_{_{T}}$ with increasing V0A multiplicity
- \rightarrow corresponding significant depletion in the low-p_{_{T}} region
- also this is <u>reminiscent of nucleus-nucleus phenomenology</u>...
 ...generally understood in terms of collective flow and/or recombination

Spectra shape analysis: pPb

Global Blast-Wave fit parameters

7 TeV pp data being worked on

Global Blast-Wave fit parameters

▷ p-Pb presents similar features as observed in Pb-Pb → parameters evolve with increasing multiplicity: larger ⟨β_T⟩, smaller T_{fo} → T_{fo} is similar to Pb-Pb for similar multiplicity, ⟨β_T⟩ is larger in p-Pb

> same results when including also Λ and K_{s}^{0} in the p-Pb global fit