

Jet physics in HI with CMS

Constantin Loizides (MIT)

CMS HI groups: Athens, Auckland, Budapest, CERN, Chongbuk, Colorado, Cukurova, Ioannina, Iowa, Kansas, Korea Univ., Lisbon, Los Alamos, Lyon, Maryland, Minnesota, MIT, Moscow, Mumbai, Seoul, Vanderbilt, UC Davis, UI Chicago, Vilnius, Zagreb

Heavy-Ion Forum, Dec 2008, CERN

2

High-transverse d+Au FTPC-Au 0-20% momentum particle 0.2 1/N_{Trigger} dN/d(∆∮) p+p min. bias STAR suppression Au+Au Central I Energy loss of partons 0.1 in medium 0 2 3 -1 1 Λ $\Delta \phi$ (radians) Nuclear modification factor PHENIX high $p_{\tau} \pi^0$ mid-rapidity d+Au @ 200 GeV [min. bias] PHENIX PHOBOS Au+Au @ 200 GeV [0-10%] .5 S 9 D p_(GeV/c) BRAHMS STAR 0.5 0_ò 10 2 8 Δ 3 p_[GeV/d] p₇ [GeV] PRL, Volume 91, Issue 7 (15 Aug 2003)

Surface effect

3

Eur.Phys.J. C38: 461, 2005

- Strong suppression and steeply falling parton production spectrum
- Observed spectra dominated by emission from surface
- Complicates understanding of suppression mechanism

<u>Almost</u> everything you want to know about jets can be found using 2-particle correlations

M.Tannenbaum, PoSCFRNC2006:001, 2006

- Only "almost" since the shape of the away-side particle distribution relative to the trigger particle (x_E distribution) does not depend on the fragmentation function (FF)
 - Reason is trigger (leading particle) bias
- Trigger bias can be overcome by
 - γ -h correlations
 - Also overcomes surface effect
 - Full jet reconstruction
 - Challenging, but much higher rate

- Consequences of HI background
 - Mean energy in cone R $E_{bgk} = 0.5 \text{R} dE_T / d \eta$
 - For R=0.5,
 - 75 GeV in central Au+Au, RHIC
 - ~150 GeV in central Pb+Pb, LHC
- Furthermore, jet energy resolution degraded by
 - Background fluctuations
 - Out-of-cone fluctuations
 - Possible out-of-cone radiation
- Typically R=0.3 to 0.5 in HI

- High p_T probes abundant
- Qualitative new probes
 - Jets, γ/Z_0 -jets
- Detailed study of hard scattering

CMS is "on shell"

- CMS is ready for collisions
 - Over 300 000 000 cosmic events recorded with full detector just in the past month

High Density QCD with Heavy Ions Physics Technical Design Report, Addendum 1

J.Phys.G34:2307-2455,2007

- Large (mid-rapidity) acceptance (tracker and calorimetry)
 - Also large forward coverage
- DAQ+HLT capable to inspect every single Pb+Pb event
- Large statistics for rare probes

For the rest of talk: Use specific example of γ -jet correlation measurement to discuss the high-pt capabilities of CMS

Goal: Measurement of the jet fragmentation function for "known" parton energy

Photon-tagged jet fragmentation functions 11

Background photons usually associated with jets

- Use photon to tag parton energy
 - Goal: Best correlation of the photon and parton energy
 - Ideally: "Use" leading order photons
 - In practice: Determine isolated photons + use cut on azimuthal opening angle between the photon and the jet to select events
 - Isolation cuts in data analysis and in calculation

Photon-tagged jet fragmentation functions 13

- Generator-level studies
 - Using MC isolation definition + opening angle cut
 - FF can be determined well with <10% deviation

14

- Study two scenarios
 - <u>Unquenched</u>: PYTHIA signal and QCD background (p+p) events mixed with central unquenched Pb+Pb HYDJET events
 - No high- p_{T} particle suppression
 - Worst case of high background rates
 - <u>Quenched</u>: PYQUEN signal and QCD background (p+p) events mixed with central quenched Pb+Pb HYDJET events
 - Suppression of high- p_{T} particles
 - Energy loss of partons radiated out of jet cone
 - Worst case for jet finding

PYQUEN/HYDJET v1.2 used with standard settings

PYQUEN v1.2: Eur. Phys. J. C 45 (2006) 211 HYDJET v1.2: hep-ph/0312204

Signal and background statistics

Study for expected statistics in one nominal LHC Pb+Pb run "year"

15

- 10⁶ sec, 0.5nb⁻¹, 3.9 x 10⁹ events
- Use 0-10% most central Pb+Pb
 - 10% smallest impact parameter
 - $dN/d\eta|_{\eta=0} \sim 2400$
- Require photon and jet to be "backto-back" in azimuth

- $\Delta \phi(\gamma, \text{jet}) > 172^{\circ}$

Data set	$p_{\rm T}$ cut [GeV/c]	isolated γ	signal γ	π^0	π_\pm	η	η^{\prime}	ω
unquenched	>70	6531	4288	23675	47421	12267	8194	30601
unquenched	>100	1841	1216	4422	9103	2357	1567	5975
quenched	>70	6512	4209	7569	14616	3825	2445	9235
quenched	>100	1860	1212	1562	3000	829	515	2051

Signal

Potential background

CMS

- Use of (forward) calorimeters and large acceptance tracker allows to characterize single events
 - Centrality
 - Event plane
 - Multiplicity
 - Mean p_T (not shown here)

Measuring photon-tagged jet FFs

CMS

Benchmark:

- 75.000 lead tungstate crystals (+APD)
 - Granularity 0.017x0.017 to 0.05x0.05
 - Coverage up to $|\eta|$ <3
- $\Delta E/E < 0.5\%$ for E>100 GeV
 - No pre-shower detector yet, only use lateral shower shape

Photon ID: Isolation and cluster shape cuts 21

- Selection variables
 - Cluster shape in ECAL
 - ECAL/HCAL energies in cones with R≤0.5
 - Background subtraction
 - Track isolation
- Total of 21 variables
 - Linear discriminant analysis (Fisher) and cut optimization using TMVA

- Set working point to 60% signal efficiency
- Leads to 3.5% false acceptance (96.5% rejection)
- Training was done on unquenched samples only

100

200

E_T [GeV]

Photon identification performance

23

Quenched Pb+Pb After cuts: S/B=4.5 Before cuts: S/B=0.3 CMS Preliminary CMS Preliminary Entries per event / 8 GeV Non-isolated particles Entries per event / 8 GeV Non-isolated particles ۰ • Isolated photons **Isolated** photons **Isolated hadrons Isolated hadrons** Ο WP=60% S_{eff} 00 Ο 00 10⁻⁵ 10⁻⁵

Photon isolation and shape cuts improve S/B by factor ~15

100

200

E_T [GeV]

300

Measuring photon-tagged jet FFs

24

CMS

 Iterative cone jet finder with background (pileup) removal

- R=0.5

- Spatial resolution in η , ϕ < 0.05
- Jet energy correction non-trivial
 - γ-jet analysis does <u>not</u> use jet energy, except for a minimal cut on uncorrected jet E_{τ} >30 GeV

Eur. Phys. J. 50 (2007) 117

Away-side jet finding (for tagged jets)

Quenched Pb+Pb

- Select away-side jet with $\Delta \phi(\gamma, jet) > 172^{\circ}$, $|\eta| < 2$ and $E_{\tau} > 30$ GeV
 - The energy cut reduces the false rate to 10% level
 - Analysis does not use jet energy otherwise
 - Jet finding efficiency rises sharply
 - Main source of systematic uncertainty in reconstructed FFs

Jet finder bias

- Jet finder bias leads to about 30% deviation in quenched case (10% in unquenched case)
- It has two contributions
 - 1) FFs and jet finding efficiency depend on parton E_{T}
 - Can be corrected with known turn-on curve (not done here)
 - For a given parton E_T, jet finding
 probability depends on parton
 fragmentation pattern
 - The jet finder is more likely to find a jet with few high p_T particles than jets with many soft particles
 - MC based correction might be possible (not done here)
- MC truth studies in narrow bins of parton E_{T} suggest that 2) dominates

Measuring photon-tagged jet FFs

CMS.

- Charged particle reconstruction using the silicon tracker
 - Algorithm is based on seeds from the silicon pixel detector
 - Extension of p+p with cuts optimized for Pb+Pb
 - Performance
 - Good efficiency
 - Low fake rate
 - Excellent momentum resolution

Reconstructed FFs

- Obtain $dN/d\xi$ using tracks in R=0.5 cone around jet axis
- For ξ>3 (~p_T<4GeV/c) dN/dξ dominated by underlying Pb+Pb event
 - Estimate background with R=0.5 cone rotated in φ by 90° rel. to jet
 - Sum event-by-event backgrounds and subtract
 - Correct for track finding efficiency

Reconstructed FFs

- Major contributions to systematic uncertainty (added in quadrature)
 - Photon selection and background contamination (15%)
 - Track finding efficiency correction (10%)
 - Wrong/fake jet matches (10%)
 - Jet finder bias (as discussed before)

No or small ξ dependence

- Medium modification of fragmentation functions can be measured
 - High significance for $0.35 < \xi < 5$ (or z < 0.7)

 $E_T^{\gamma} > 70 GeV$

Summary

- CMS will be able to reliably measure modified jet FFs in central Pb+Pb using photon-tagged jet events
 - Estimated systematic errors are small wrt expected modification
- This analysis is one example of how the superb capabilities of CMS can be combined in HI collisions
 - High resolution calorimeters
 - Jets, photons
 - High resolution large tracker
 - Charged hadrons from ~100's MeV to 100's GeV
 - Fast flexible DAQ (L1 + HLT)
 - Jet, photon, muon and electron triggers
 - Event-by-event characterization
 - Flow, centrality, multiplicity, mean pt
 - (also due to large acceptance forward calorimetry)

BACKUP SLIDES

In-medium modified fragmentation functions 35

Compton

Annihilation

•For a photon, calculate total $p_{\tau}^{(*)}$ in cone of R=0.5, P_{τ}^{tot} , and find hadron with largest P_{τ}^{max}

Require

 $(P_T^{tot} - E_T) < (5GeV + 0.05 E_T)$ $P_T^{max} < (4.5GeV + 0.025 E_T)$

•Events where an isolated photon is emitted back-to-back with a jet are our signal events

(*) excluding neutrinos and muons

Tracking efficiency

- Low p_T cutoff at 1GeV/c
- Efficiency (algorithmic + geometric) ~ 50-60%
- Fake rate ~ few %

38

 Use the energy content in cone around candidate direction in ECAL and HCAL

Photon isolation: Background subtraction 39

- Subtract HI background
 - ECAL: - HCAL: $C'_i = C_i - \langle C_i \rangle$ $R'_i = R_i - \langle R_i \rangle$

Based on cone variables form

 $\{R_1',R_2',R_3',R_4',R_5',C_1',C_2',C_3',C_4',C_5'\}$

• Combine to

$$S_R' = \sum_i \alpha_i' R_i' + \sum_i \beta_i' C_i'$$

to be determined coefficients

- dRxy: ΔR of (y+1st) nearest track with p_T > (0.4*x + 0.2) GeV/c
- We use
 - dR10 for p+p
 - dR41 for Pb+Pb

Based on ECAL shape variables form

•

Quenched Pb+Pb

- Performance for $E_T^{\gamma} > 70 \text{GeV}$
 - Efficiency > 60%
 - Fake rate < 20%
 - Transverse energy resolution: 2-5%

Before cuts: S/B=0.3 After cuts: S/B=4.5

- Quenching mechanism in PYQUEN moves energy out of R=0.5 cone
- This lowers jet finding efficiency for a given initial parton E_{τ}

- Pb+Pb background events
 - 0-10% HYDJET v1.2, 1000 events, dN/d η ~ 2400
- PYTHIA (v6.411)/PYQUEN (v1.2) events
 - $E_{T} > 70$ GeV potential trigger particle
 - $E_{T} > 60$ GeV reconstructed supercluster
- Tracks
 - p_T > 1 GeV/c, > 8 hits, prob > 0.01
- Reconstructed events
 - Isolated photon with $E_{_T}$ > 70 (100) GeV, $|\eta|$ < 2
 - Jet with $E_T > 30$ GeV, $|\eta| < 2$, $\Delta \phi(\gamma, jet) > 3$
- Fragmentation function
 - Cone-size around jet axis: 0.5

Fragmentation function results ($E_{T,\gamma} > 70 \text{ GeV}$)46

Fragmentation functions ($E_{T,\gamma} > 100 \text{ GeV}$) 47

Reconstructed FF agrees with MC FF within expected uncertainty

70 vs 100 GeV: Trade-off between statistical and systematic uncertainties

Fragmentation functions (vs z)

Jet Finder Bias (Quenched Jets)

Final result: Fragmentation function ratio

- Medium modification of fragmentation functions can be measured
 - High significance for 0.35 < ξ < 5 for both, $E_{\tau}^{\gamma} > 70$ GeV and $E_{\tau}^{\gamma} > 100$ GeV

CMS

Physics reach with jet trigger in HLT

