Results from pPb collisions at the LHC

CERN Prévessin

Constantin Loizides (LBNL/EMMI)

Future Trends in High-Energy Nuclear Collisions, Beijing, China

LHC 27 km

Published and preliminary pPb results

- 1. ALICE, PRL 110 (2013) 032301, Pseudorapidity density of charged particles
- 2. ALICE, PRL 110 (2013) 082302, Transverse momentum and R_{pPb} of charged particles
- 3. CMS, PLB 718 (2012) 795, Near-side ridge
- 4. ALICE, PLB 719 (2013) 29, Double ridge (v_2 and v_3)
- 5. ATLAS, PRL 110 (2013) 182302, Double ridge (v_2 and v_3)
- 6. ATLAS, arXiv:1303.2084, Two and four-particle correlations
- 7. CMS, PLB 724 (2013) 213, Two and four-particle correlations compared to PbPb
- 8. LHCb-CONF-2012-034, Inelastic pPb cross section
- 9. CMS-PAS-HIN-13-001, Dijet production versus forward energy
- 10.ALICE preliminary, Inclusive J/ψ production
- 11.LHCb-CONF-2013-008, Prompt and non-prompt J/ ψ production
- 12.ALICE, arXiv:1307.1094, Average transverse momentum compared to pp and PbPb
- 13.ALICE, arXiv:1307.3237, Double ridge (v2) for pion, kaon, protons
- 14.CMS, arXiv:1307.3442, Identified hadron (pion, kaon, proton) spectra
- 15.ALICE, arXiv:1307.6796, Identified hadron (pion, kaon, proton, lambda) spectra
- 16.ALICE, preliminary, Inclusive charged jets
- 17.ALICE, preliminary, Inclusive Upsilon (1S) production
- 18.ALICE, preliminary, D-meson production
- 19.ALICE, preliminary, HFE production
- 20.ALICE, preliminary, Centrality in pPb (Q_{pPb})
- 21.ALICE, preliminary, UPC in pPb (not discussed in this presentation)

Motivation for pPb at the LHC

- Study high-density QCD in saturation region
 - Saturation scale (Q_s) enhanced in nucleus ($\sim A^{1/3\lambda}$)
 - In perturbative regime at the LHC: $Q_s^2 \sim 2-3$ GeV/c
 - Qualitatively expect $x \sim 10^{-4}$ at $\eta = 0$ (vs 0.01 at RHIC)
- Study pA as a benchmark for AA
 - Benchmark hard processes to disentangle initial from final state effects
 - Characterize nuclear PDFs at small-x
 - Comparison of systems: pA contains elements of pp and AA
- Other physics opportunities
 - Diffraction
 - UPC + Photo-nuclear excitation

Motivations summarized in JPG 39 (2012) 015010

Event multiplicity classes in pPb

- Relation of multiplicity to centrality via Glauber model not straight-forward
 - Correlation between collision geometry and multiplicity not as strong as in AA
 - System also exhibits features of biased pp (NN) collisions in the multiplicity tails
 - N_{coll} from Glauber not the only relevant scaling variable (see later)
 - Use minimum-bias collisions instead $(N_{coll} = A \sigma_{pp} / \sigma_{pA})$
- Define event classes by slicing various multiplicity related distributions
 - Every experiment uses its own selection and usually provides (corrected) multiplicity at mid-rapidity
 - Event class definition may matter for particular measurements
 - Systematics from different selections

Charged particle pseudorapidity density 5

- Tracklet based analysis
 - Dominant systematic uncertainty from NSD normalization of 3.1%
- Reach of SPD extended to |η|<2 by extending the z-vertex range
- Results in ALICE laboratory system
 - $y_{cms} = -0.465$ (direction of proton)
- Comparison with models
 - Most models within 20%
 - Saturation models have too steep rise between p and Pb region
 - See for further comparisons Albacete et al., arXiv:1301.3395

ALICE, PRL 110 (2013) 032301

NB: HIJING calculations are expected to increase by ~4% from INEL to NSD

Charged particle p_{T} in bins of η

•

Nuclear modification for charged particles 7

$$R_{AB} = \frac{\mathrm{d}N_{AB}/\mathrm{d}p_{\mathrm{T}}}{\langle N_{\mathrm{coll}}\rangle \mathrm{d}N_{\mathrm{pp}}/\mathrm{d}p_{\mathrm{T}}}$$

- R_{pPb} (at mid-rapidity) consistent with unity for $p_T > 2$ GeV/c
- High-p_T charged particles exhibit binary scaling
- Unlike in PbPb, no suppression at high p_T is observed
- Suppression at high p_T in PbPb is not an initial state effect

ALICE, PRL 110 (2013) 082302

Nuclear modification for charged jets

- Charged jet spectrum in minimum bias pPb with anti-k_T for R=0.2 and 0.4 in |η_{lab}|<0.5
 - Subtraction of UE with jet area/median approach (CMS, JHEP 08 (2012) 130)
 - Unfolding of background fluctuations and detector response using SVD
- Reference spectrum for pp using 7 TeV data and scaled with PYTHIA6 (Perugia 2011)
- No sign of nuclear modification
 - Nuclear modification factor consistent with unity within large uncertainties
 - Jet structure ratio consistent with that in pp

Measurements of dijet properties

Measurements of dijet properties

J/ψ production

- Extraction of prompt J/psi and J/psi from b decays using simultaneous fit of mass and pseudo-proper time
- Obtain (total) cross sections
 - Forward: 1.5<y<4.0 (0.75/nb)
 - Backward: -5.0<y<-2.5 (0.3/nb)
 - p_T<14 GeV/c

- Extraction of inclusive J/psi using Crystal Ball as signal and exponential plus polynomial as background
- Obtain invariant yields
 - Forward: 2.03<y<3.53 (~4.9/nb)
 - Backward: -4.46<y<-2.96 (~5.5/nb)
 - p_T<15 GeV/c

Nuclear modification for inclusive J/ψ 12

- Uncertainty on R_{pPb} dominated ^a by uncertainty of pp reference (constructed by interpolating existing data)
 - R_{pPb} decreases with forward y
 - Within large uncertainties, no apparent y dependence in backward region
- Inclusive J/psi, ALICE, preliminary ط^و1.4 p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow \mu^+ \mu^-$, $p_{T} > 0$ $L_{\text{Forward y}} = 4.9 \text{ nb}^{-1}, L_{\text{Backward y}} = 5.5 \text{ nb}^{-1}$ 1.2 0.8 0.6 EPS09 NLO (Vogt, arXiv:1301.3395 and priv.comm.) 0.4 CGC (Fujii et al., arXiv:1304.2221) ELoss with q_=0.075 GeV²/fm (Arleo et al., arXiv:1212.0434) EPS09 NLO + ELoss with q_=0.055 GeV²/fm (Arleo et al., arXiv:1212.0434) EPS09 LO central set (Ferreiro et al., arXiv:1305.4569) 0.2 EPS09 LO central set + σ_{abs} = 1.5 mb (Ferreiro et al., arXiv:1305.4569) EPS09 LO central set + o abs = 2.8 mb (Ferreiro et al., arXiv:1305.4569)
- Comparison with models
 - Good agreement with models incorporating shadowing (EPS09 NLO) and/or a contribution of coherent parton energy loss
 - CGC model (Fujii et al.) disfavored by the data
 - Rapidity dependence in backward region may provide additional constraints
- Preliminary LHCb results about 30% lower (see backup)
 - Differences being discussed between experiments

Nuclear modification for Y(1S)

- Extract yield using 3 extended CB fits with 5 parameters (3 amplitudes, mean and width for Y(1S), tails from MC)
- Reference constructed by interpolating existing pp data
- Comparison with models
 - "Somewhat orthogonal" to what is concluded from J/ψ
 - Combined dataset provides strong constraints to models

Nuclear modification of D-mesons

- Reconstruction using decay topology (displaced vertex, PID)
- Extraction of yield using Gaussian + Exponential fit
- Fraction of feed-down Ds subtracted using FONLL and assumption that "prompt ≈ nonprompt R_{pPb}"
- Reference constructed using data at 7 TeV scaled by FONLL

14

• R_{pPb} for D-mesons consistent and unity within uncertainty

Nuclear modification of D-mesons

- Reconstruction using decay topology (displaced vertex, PID)
- Extraction of yield using Gaussian + Exponential fit
- Fraction of feed-down Ds subtracted using FONLL and assumption that "prompt ≈ nonprompt R_{pPb}"
- Reference constructed using data at 7 TeV scaled by FONLL

- R_{pPb} for D-mesons consistent and unity (within large) uncertainty
- CGC and shadowing calculations describe the data

Nuclear modification of D-mesons

- Reconstruction using decay topology (displaced vertex, PID)
- Extraction of yield using Gaussian + Exponential fit
- Fraction of feed-down Ds subtracted using FONLL and assumption that "prompt \approx non-prompt R_{pPb} "
- Reference constructed using data at 7 TeV scaled by FONLL

- R_{pPb} for D-mesons consistent and unity (within large) uncertainty
- CGC and shadowing calculations describe the data
- Final state suppression in PbPb

Nuclear modification for HFE

- Measurement with TPC+TOF and TPC+EMCAL
- Subtraction of background obtained either with cocktail simulation or tagged electrons from photon conversions

- Reference obtained using 7 TeV data scaled by FONLL
- R_{pPb} consistent with unity within large uncertainty (perhaps some "cronin enhancement")
- Calculations describe data

Two-particle angular correlations

Extraction of double ridge structure

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - It is assumed that the 60-100% class is free of non-jet like correlations
 - The near-side ridge is accompanied by an almost identical ridge structure on the away-side
 - Similar analysis strategy by ATLAS (PRL 110 (2013) 182302)

Ridge v_2 and v_3

21

ALICE, PLB 719 (2013) 29 ATLAS, PRL 110 (2013) 182302 ی^{ہ 0.20} p-Pb \ s_{NN} = 5.02 TeV V_n ATLAS p+Pb = 2 ۷₂ , $0.5 < p_{T,trig} < p_{T,assoc} < 1.0 \text{ GeV}/c$ s...=5.02 TeV n = 3 $1.0 < p_{T,trig} < p_{T,assoc} < 2.0 \text{ GeV}/c$ $2.0 < p_{T,trig} < p_{T,assoc} < 4.0 \text{ GeV}/c$ 0.15 0.15 0.1 0.10 $\Sigma E_T^{Pb} > 80 \text{ GeV}$ 0.05 0.05 2<|Δη|<5 0.5<p_+^b<4 GeV 0 0.00 0-20% 20-40% 40-60% p_⊤a [GeV] 2 4 0 Event class

 Sizable values for v₂ and even v₃ reached for high-multiplicity events

Ridge v_2 and v_3 and hydrodynamics 22

- Sizable values for v₂ and even v₃ reached for high-multiplicity events
- Results qualitatively consistent with viscous hydrodynamic calculations with initial state fluctuations from Glauber
 - Caveat: Calculations in pPb less robust wrt changes of assumptions than in AA

Bozek and Broniowski, PRC 88 (2013) 014903

Ridge modulation v_2 and v_3 and CGC 23

 $\Delta \phi$

v_2 in pPb and PbPb

CMS, PLB 724 (2013) 213

24

Similar shape of v_2 in pPb and PbPb but with smaller magnitude. As in PbPb, v2{4} in pPb non-zero, and not equal to v2{2}.

v_3 in pPb and PbPb

Similar shape and magnitude of v_3 in pPb and PbPb. As for v_2 hydro predictions describe high-multiplicity data.

V_3 in PbPb and pPb

P(N)

 10^{-6}

10-7

- Same v_3 in pPb as in PbPb
- Turn on at around M=50 tracks (~minbias pPb)
- Established picture in PbPb
 - Fluctuations of initial state are transformed into final state through interactions

• Same physics mechanism despite different underlying dynamics (+ system size)?

200

• Maybe we select on events in which the proton wave function fluctuated to large values (fat proton, Mueller, arXiv:1307.5911v2)

400

 $N_{trk}^{offline}$

600

Identified particle v₂

- Per-trigger yield with π, K, or p as associated particles rel. to trigger particles (h)
- Subtract low- (60-100%) from high-multiplicity (0-20%) and Fourier decompose
- Unidentified particle v₂ extended (and consistent with previous lowstatistics measurement)

Identified particle v₂

- Per-trigger yield with π, K, or p as associated particles rel. to trigger particles (h)
- Subtract low- (60-100%) from high-multiplicity (0-20%) and Fourier decompose
- Unidentified particle v₂ extended (and consistent with previous lowstatistics measurement)

- Characteristic mass splitting observed as known from PbPb
- Crossing of proton and pion in the same p_T region (2-3 GeV/c)
- Models including a hydrodynamic expansion describe the data Werner et al., arXiv:1307.4379 Bozek et al., arXiv:1307.5060

Identified particle p_T spectra

Radial flow

$$p_T^{flow} = p_T + m \beta_T^{flow} \gamma_T^{flow}$$

Radial flow expected to reflect in spectra, in particular in p/π ratio

Shuryak and Zahed, arXiv:1301.4470

Identified particle p_T spectra

3

p,p

210

185

1.5

Identified particle p_T spectra

Particle ratios versus p_T

ALICE, arXiv:1307.6796

- Particle ratios in pPb show similar trends than those in PbPb
- The strength of the effects is similar to those in peripheral PbPb collisions
- Increase of p/π and Λ/K in PbPb usually explained by radial flow and/or parton recombination

Multiplicity scaling of ratios

0<y_{cms}<0.5

- Fit ratio vs dN/dη in p_T bins with power-law (A x^Bwith x=dN/dη)
- Same increase of ratio for similar increase of dN/dη in pPb and PbPb
- Same power-law scaling exponent (B) in pPb and PbPb
 - Underlying mechanism?
- Similar scaling found for p/π

ALICE, arXiv:1307.6796

Average p_T versus N_{ch}

ALICE, arXiv:1307.1094

рр

- Within PYTHIA model increase in mean p_T can be modeled with Color Reconnections between strings
- Can be interpreted as collective effect (e.g. Velasquez et al., arXiv:1303.6326v1)

pPb

- Increase follows pp up to N_{ch} ~14 (90% of pp cross section, pp already biased)
- Glauber MC (as other models based on incoherent superposition) fails
- Like in pp: Do we need a (microscopic) concept of interacting strings?
- EPOS LHC which includes a hydro evolution describes the data (also pp)

PbPb

• As expected, incoherent superposition can not describe data

Centrality dependent nuclear modification 35

How to make measurement centrality dependent? $R_{pA}^{cent}(p_{T}) = \frac{dN^{pA}/dp_{T}}{\langle T_{pA}^{cent} \rangle d\sigma^{pp}/dp_{T}} = \frac{dN^{pA}/dp_{T}}{\langle N_{coll}^{cent} \rangle dN^{pp}/dp_{T}}$

N_{coll} from Glauber in multiplicity classes 36

Centrality	<n<sub>coll> CL1</n<sub>	<n<sub>coll> V0M</n<sub>	<n<sub>coll> V0A</n<sub>	Max Diff.	<i>Impact Parameter</i> Slicing
0 - 5%	15.4	15.8	14.8	6.8%	14.4
5 - 10%	13.5	13.7	13.1	4.5%	13.8
10 - 20%	12.0	12.1	11.7	3.4%	12.7
20 - 40%	9.3	9.4	9.4	1.1%	10.2
40 - 60%	6.0	6.1	6.5	6.6%	6.3
60 - 80%	3.46	3.33	3.85	16%	3.1
80 -100%	1.86	1.67	1.94	16%	1.44

- Glauber fit to multiplicity distribution (V0A) with Negative Binomial ansatz coupled to Glauber MC
 - Obtain P(N_{part}) in centrality slices
 - Same approach as in ALICE, arXiv:1301.4361
- Obtain <N_{coll}> (= <N_{part}> -1) from Glauber
 - Similar for different estimators (CL1, V0M, V0A)
 - Similar to MC closure (done with HIJING) and systematic uncertainty from variation of Glauber parameters

Glauber MC Parameters

ALICE, preliminary

$$\rho(r) = \rho_0 \frac{1}{1 + \exp(\frac{r - R}{a})}$$

 $R = 6.62 \pm 0.06 \text{ fm}$

a = 0.546 ± 0.01fm

Minimum NN distance: 0.4±0.4 fm

pN Cross-section

 $\sigma_{pN} = 70 \pm 5 \text{ mb}$

Proton radius

 $R_{p} = 0.6 \pm 0.2 \text{ fm}$

Multiplicity biases and binary scaling 37

ALICE, preliminary

- But, <N_{coll}> from Glauber is not the right scaling variable
- Multiplicity per N_{part} strongly biased in pPb
 - Models including MPI (e.g. like HIJING) intrinsically include a fluctuating number sources for particle production
- For a given centrality hard processes qualitatively scale with

 $\langle N^{Glauber}_{coll,cent}
angle \langle n_{hard}
angle_{cent} I \langle n_{hard}
angle_{pp}$

- Mean NN impact parameter increases in peripheral collisions
 - Expect softer than average collisions?
- Also, veto for high-p_T processes in ^{0.9}_{0.8} low multiplicity classes

Q_{pPb} (not R_{pPb})

- Not a R_{pPb} measurement as not equals to 1 in absence of nuclear effects!!!
- Spread reduces: $CL1 \rightarrow VOM \rightarrow VOA$
- Jet veto present in CL1, but not in VOA

Q_{pPb} (not R_{pPb})

Summary

1. ALICE, PRL 110 (2013) 032301, I 2. ALICE, PRL 110 (2013) 082302, 3. CMS, PLB 718 (2012) 795, Near-4. ALICE, PLB 719 (2013) 29, Doub 5. ATLAS, PRL 110 (2013) 182302, 6. ATLAS, arXiv:1303.2084, Two and 7. CMS, PLB 724 (2013) 213, Two a 8. LHCb-CONF-2012-034, Inelastic 9. CMS-PAS-HIN-13-001, Dijet prod 10.ALICE preliminary, Inclusive J/ψ 11.LHCb-CONF-2013-008, Prompt a 12.ALICE, arXiv:1307.1094, Average 13.ALICE, arXiv:1307.3237, Double 14.CMS, arXiv:1307.3442, Identified 15.ALICE, arXiv:1307.6796, Identifie 16.ALICE, preliminary, Inclusive chai 17.ALICE, preliminary, Inclusive Ups 18.ALICE, preliminary, D-meson proc 19.ALICE, preliminary, HFE production 20.ALICE, preliminary, Centrality in p 21.ALICE, preliminary, UPC in pPb

- Minbias measurements on various probes in pPb (h, jets, J/ Ψ , Y, Ds and Bs) show that suppression in PbPb at LHC is essentially only from final state
 - Initial state models, in particular those based on shadowing, typically successful
- Due to fluctuations, centrality determined in $|\eta| < 5$ includes a bias on the hardness of the collision that needs to be accounted for in models
- Two-particle correlation and PID results prompt debate of initial and final state effects in pPb and PbPb (+in high mult. pp)
 - Observables exhibit features thought to be characteristic for AA
 - Very exciting moment in our field

Thanks to the LHC for superb pPb operations and to the experiments for their beautiful results

Extra

LHC pPb runs at 5.02 TeV

- LHC operated with
 - 4 TeV proton beam and 1.57 TeV / nucleon Pb beam
 - Center of mass energy 5.02 TeV per nucleon pair
 - Center of mass per nucleon pair rapidity shift dY = 0.465 in direction of proton
- 2012 pilot run (4 hours of data taking)
 - About 1/µb per experiment with very low pileup
- 2013 long run (3 weeks of data taking)
 - Delivered about 30/nb to ATLAS, CMS and ALICE
 - ALICE recorded also about 50/µb with μ <0.003 (for the rest μ <0.05)
 - About 2/nb for LHCb (new to heavy-ion operation)
 - Beam reversal (relevant for ALICE and LHCb) for about half of statistics
 - Van der Meer scans in both beam configuations
- No pp reference data available at 5.02 TeV
 - Use scaled results pp collisions at 2.76, 7 and 8 TeV and/or models

Inelastic pPb cross section

- Count collisions which produce at least one track in $2.5 < \eta < 4.5$ (proton side) with p_{τ} >0.2 GeV/c
 - In HIJING/DPMJET only 1-2% events without a charged particle
- Analysis steps
 - Beam gas subtraction
 - Pileup below permille level ignored
 - Trigger efficiency $100\% \pm 1\%$
 - Correction for finite single track finding efficiency: 98% ± 2%
 - Convert using integrated luminosity measured with SMOG
 - Systematic uncertainty dominated by 5.2% error on luminosity

$\sigma_{inel}(2.5 < \eta_{cm} < 4.5, \ p_T > 0.2 \, { m GeV}/c) = 2.09 \pm 0.12 \, { m b}$

(consistent with HIJING, DPMJET and Glauber with σ_{NN} =70mb)

NSD pPb normalization

- Event selection
 - VZERO-A (2.8<η<5.1) and VZERO-C (-3.7<η<-1.7) incl. time cuts
 - Systematic variation using ZDC on nucleus side (ZNA)
- Resulting event sample
 - Non single-diffractive (NSD)
 - At least one binary N+N interaction is NSD (Glauber picture)
 - Inspired from DPMJET, which includes incoherent SD of the projectile with target nucleons that are mainly concentrated on the surface of the nucleus
 - SD about 4% from HIJING, DPMJET or standalone Glauber
 - Negligible contamination from SD and EM processes
- Validated with a cocktail of generators
 - DPMJET for NSD (2b)
 - PHOJET + Glauber for incoherent SD part (0.1b)
 - SD/INEL = 0.2 in pp at 7 TeV (arXiv:1208.4968)
 - EM with STARLIGHT (0.1-0.2b)

ALICE, PRL 110 (2013) 032301

Pseudorapidity density at midrapidity 45

- Measurement (tracklet based)
 - $dN/d\eta = 16.81 \pm 0.71$ (syst)
 - Converted into centre-of-mass system using HIJING
 - Dominant uncertainty from NSD normalization of 3.1%
- Glauber model for pPb
 - With σ_{INEL} = 70 ± 5 mb
 - <Npart> = 7.9 ± 0.6 (syst)
- Participant scaled value
 - $(dN/d\eta)/(Npart) = 2.14 \pm 0.17$ (syst)
 - About 15% below NSD pp
 - Similar to pp INEL
- Inelastic pPb would be 4% lower (estimate from models)

Charged particle p_T vs models

Charged particle p_T vs models

by including a hydrodynamical evolution.

Cronin effect at RHIC and LHC

- R_{AB} > 1 at intermediate p_T observed in dAu collisions at RHIC typically attributed to Cronin effect
- No enhancement seen in pPb at the LHC
- No Cronin effect?

ALICE, PRL 110 (2013) 082302

STAR, PRL 91 (2003) 072304

Cronin effect at SPS

NA49, NPA 783 (2007) 65 WA98, PRL 89 (2002) 252301

Model comparisons are required to understand R_{DPb} at the LHC

Nuclear modification factor vs models 50

- Saturation (CGC) models:
 - Consistent with the data
 - Large uncertainties
- pQCD models with shadowing
 - Consistent with data
 - Tension at high p_{T} for LO+CNM model
- HIJING 2.1
 - With shadowing only matches at low p_T (see also dN/d η)
 - No shadowing better at high p_{T}
- Spectrum itself interesting
 - Neither HIJING nor DPMJET do describe the p-Pb p_T spectrum itself

NB: HJING calculations are expected to increase by ~4% from INEL to NSD

J/ψ double differential cross section 51

Total cross-sections:

Forward: $p_T < 14 \text{ GeV/c}$, **1**. **5** < **y** < **4**. **0**

 $\sigma_{pA}(prompt J/\psi) = 1028.2 \pm 13.6 (stat.) \pm 88.6(syst.) \mu b$ $\sigma_{pA}(J/\psi from b) = 150.1 \pm 4.2 (stat.) \pm 12.6(syst.) \mu b$

Backward: $p_T < 14 \text{ GeV/c}$, -5 < y < -2.5

 $\sigma_{Ap}(prompt J/\psi) = 1141.9 \pm 49.8 (stat.) \pm 98.4 (syst.) \mu b$ $\sigma_{Ap}(J/\psi from b) = 119.7 \pm 8.3 (stat.) \pm 10.0 (syst.) \mu b$ Systematic uncertainties dominated by luminosity, fit model and data-mc consistency

J/ψ interpolated pp reference

- Linear interpolation to obtain prompt J/psi cross section in pp at 5.02 TeV
- Clear suppression in pPb, while moderate in Pbp

LHCb and ALICE interpolations are consistent within large uncertainties. Need pp reference run at 5.02 TeV!

- Interpolation between RHIC, CDF and LHC data based on phenomenological shape for the inclusive J/psi cross section
 - dσ/dy=3.85±0.68 μb⁻¹ (2.03<y<3.53)
 - dσ/dy=2.65±0.66 μb⁻¹ (-4.46<y<-2.96)
- Consistent with FONLL and CEM

Forward-backward asymmetry

Inclusive J/psi, ALICE, preliminary

- Forward-to-backward ratio in the range 2.96<|y|<3.53
 - $R_{FB} = 0.60 \pm 0.01 \text{ (stat)} \pm 0.06 \text{ (syst)}$
 - Free of uncertainty from pp reference
- Pure shadowing models seem to overestimate the ratio
- p_T dependence provides additional constraints

Forward-backward asymmetry

- Forward-to-backward ratio in common |y| ranges
 - Free of uncertainty from pp reference
 - Good agreement between prompt and inclusive measurement
- Models incorporating shadowing and energy loss consistent with data

Prompt vs inclusive J/ψ R_{pPb}

- Comparison between prompt and inclusive measurement
 - Central values for LHCb about 30% lower
 - Both measurements on-the-edge of being compatible within uncertainties
 - Understanding the difference is ongoing
 - Similar conclusions wrt the comparison with models

Extraction of double ridge structure 56

ATLAS, PRL 110 (2013) 182302

- Similar two ridge structures also observed by ATLAS
 - Event multiplicity classes defined by sum of transverse energy $(3.1 < \eta < 4.9)$ on the Pb nucleus side
 - Here, the jet peak at (0,0) remains even after subtraction of 50-100% from the 0-2% multiplicity class

Dependence on event selection

57

ALICE, PLB 719 (2013) 29

- A residual jet peak at (0,0) remains even after subtraction of 60-100% from the 0-20% multiplicity class
- Compare effects using different event class definition

Multi-particle correlations in PbPb: v₂{4} 59

22

- Cumulants to extract genuine k-particle correlations excluding those from k-1 particles
- Higher order cumulants successfully used in PbPb
- Definitions for k=2 and k=4
 - $v_{2}{2}^{2}=\langle v_{2} \rangle^{2}+\sigma_{v_{2}}^{2}+\delta_{2}$ $v_{2}\gg 1/\sqrt{M}$

•
$$v_2 \{4\}^2 = \langle v_2 \rangle^2 - \sigma_{v_2}^2$$

• $v_2 \gg 1/M^{3/4}$
- eg. M=100, $v_2 >> 0.03$

• Care is needed when averaging over M, as cumulants are also sensitive to multiplicity fluctuations

M=<N_{ch}>≈100 in |η|<1

Multi-particle correlations in pPb: v_2 {4} 60

- Using four particle angular correlations subtracting those from two particles
- Genuine four particle correlations present in pPb
 - Turn-on at around M=50 offline tracks
 - Difference to ATLAS points at low M probably due to multiplicity fluctuations
 - Magnitude smaller than in PbPb

Multi-particle correlations in pPb: v_2 {4} 61

- Using four particle angular correlations subtracting those from two particles
- Genuine four particle correlations present in pPb
 - Turn-on at around M=50 offline tracks
 - Difference to ATLAS points at low M probably due to multiplicity fluctuations
 - Magnitude smaller than in PbPb
- Hydrodynamical predictions (Bozek, PRC 85 (2012) 014911) consistent with pPb data
- Higher order correlations not yet included in CGC glasma model

Integrated v_2 in PbPb and pPb

CMS, PLB 724 (2013) 213

62

 v_2 in pPb is smaller than in PbPb

Multiplicity scaling of ratios

0<y_{cms}<0.5

- Fit ratio vs dN/dη in p_T bins with power-law (A x^Bwith x=dN/dη)
- Same increase of ratio for similar increase of dN/dη in pPb and PbPb
- Same power-law scaling exponent (B) in pPb and PbPb
 - Underlying mechanism?
- Similar scaling found for p/π
- Similar scaling also holds for pp (ALICE, preliminary)
 - Caveat: Selection bias

ALICE, arXiv:1307.6796

Blast-Wave analysis

- Global Blast-Wave fit with 3 parameters
- Ranges
 - π: 0.5-1.0 GeV/c
 - K: 0.2-1.5 GeV/c
 - p: 0.3-3.0 GeV/c
 - K_s⁰: 0.0-1.5 GeV/c
 - A: 0.6-3.0 GeV/c
- For the same multiplicity:
 - Similar freeze-out temperature
 - Stronger radial flow

Blast-Wave results from PYTHIA with color reconnection shows qualitatively similar results (but does not include collective flow)

UPC in pPb

- ALICE covers lowest energies measured at HERA (and can go higher in Pbp
- First yy measurement in pPb (consistent with STARLIGHT prediction)