Summary of recent results from pPb collisions at the LHC

Constantin Loizides (LBNL/EMMI)

22 Nov 2013

EMMI workshop on Heavy Flavor and QCD phase structure in high-energy nucleus collisions LBNL, Berkeley, USA

Published pPb results

- 1. ALICE, PRL 110 (2013) 032301, Pseudorapidity density of charged particles
- 2. ALICE, PRL 110 (2013) 082302, Transverse momentum and R_{pPb} of charged particles
- 3. CMS, PLB 718 (2012) 795, Near-side ridge
- 4. ALICE, PLB 719 (2013) 29, Double ridge (v_2 and v_3)
- 5. ATLAS, PRL 110 (2013) 182302, Double ridge (v_2 and v_3)
- 6. ATLAS, PLB 725 (2013) 60, Two and four-particle correlations
- 7. CMS, PLB 724 (2013) 213, Two and four-particle correlations compared to PbPb
- 8. ALICE, arXiv:1308.6726, Inclusive J/ ψ production
- 9. LHCb, arXiv:1308.6729, Prompt and non-prompt J/ ψ production
- 10.ALICE, arXiv:1307.1094, Average transverse momentum compared to pp and PbPb
- 11.ALICE, arXiv:1307.3237, Double ridge (v_2) for pion, kaon, protons
- 12.CMS, arXiv:1307.3442, Identified hadron (pion, kaon, proton) spectra
- 13.ALICE, arXiv:1307.6796, Identified hadron (pion, kaon, proton, lambda) spectra

Preliminary pPb results

- 1. LHCb-CONF-2012-034, Inelastic pPb cross section
- 2. CMS-PAS-HIN-13-001, Dijet production versus forward energy
- 3. ALICE preliminary, Inclusive charged jets
- 4. ALICE preliminary, Inclusive Upsilon (1S) production
- 5. ALICE preliminary, D-meson production
- 6. ALICE preliminary, HFE production
- 7. ALICE preliminary, Centrality (Q_{pPb})
- 8. ALICE preliminary, UPC
- 9. CMS-HIN-13-003, Y(1S), Y(2S) and Y(3S) compared to pp and PbPb
- 10.ATLAS-CONF-2013-096, Centrality dependence of $dN/d\eta$
- 11.ATLAS-CONF-2013-107, Centrality and rapidity dependence of particle R_{pPb}
- 12.ATLAS-CONF-2013-105, Centrality and rapidity dependence of jet R_{pPb}
- 13.CMS-PAS-HIN-12-017, Charged particle $R_{\mbox{\tiny PPb}}$ and pseudo-rapidity asymmetry
- 14.ALICE preliminary, Mini-jets properties
- 15.ALICE preliminary, HF-electrons correlations
- 16.ALICE preliminary, Charged di-jet acoplanarity
- 17.ALICE preliminary, J/ ψ (2S) plus p_T dependence of J/ ψ R_{pPb}
- 18.ALICE preliminary, Phi production
- 19.ALICE preliminary, Balance function

NEW at HP13

Motivation for pPb at the LHC

- Study high-density QCD in saturation region
 - Saturation scale (Q_s) enhanced in nucleus ($\sim A^{1/3\lambda}$)
 - In perturbative regime at the LHC: $Q_s^2 \sim 2-3$ GeV/c
 - Qualitatively expect $x \sim 10^{-4}$ at $\eta = 0$ (vs 0.01 at RHIC)
- Study pA to benchmark AA
 - Measure properties of hard processes to disentangle initial from final state effects
 - Characterize nuclear PDFs
- Other physics opportunities
 - Diffraction
 - UPC + Photo-nuclear excitation

Motivations summarized in JPG 39 (2012) 015010

Nuclear modification factor

$$R_{\rm pA}^{\rm X}(p_{\rm T}) = \frac{{\rm d} N_{\rm X}^{\rm pA}/{\rm d} p_{\rm T}}{\langle N_{\rm coll} \rangle {\rm d} N_{\rm X}^{\rm pp}/{\rm d} p_{\rm T}}$$

Average number of collisions from Glauber (or cross sections): $\langle N_{coll} \rangle = A \sigma_{pp} / \sigma_{pA} \approx 6.9$

$$\frac{\mathrm{d}\,\sigma^{^{pA\to X}}}{\mathrm{d}\,p_{\mathrm{T}}} \propto f_{i}^{p}(x_{1,}Q^{2}) \circ f_{j}^{A}(x_{2,}Q^{2}) \circ \sigma^{^{ij\to k}}(x_{1,}x_{2,}p_{\mathrm{T}}/z,Q^{2}) \circ D_{k\to X}(z,Q^{2}) \circ FS \, e\!f\!f\!ects$$

- In absence of final state effects provides information on nuclear PDF $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\text{CTEQ6.1M}}(x,Q^2)$
- Two regimes important at LHC:
 - Shadowing and Anti-shadowing

Nuclear modification factor

$$R_{\rm pA}^{\rm X}(p_{\rm T}) = \frac{{\rm d} N_{\rm X}^{\rm pA}/{\rm d} p_{\rm T}}{\langle N_{\rm coll} \rangle {\rm d} N_{\rm X}^{\rm pp}/{\rm d} p_{\rm T}}$$

Average number of collisions from Glauber (or cross sections): $\langle N_{coll} \rangle = A \sigma_{pp} / \sigma_{pA} \approx 6.9$

$$\frac{\mathrm{d}\,\sigma^{^{pA\to X}}}{\mathrm{d}\,p_{\mathrm{T}}} \propto f_{i}^{p}(x_{1,}Q^{2}) \circ f_{j}^{A}(x_{2,}Q^{2}) \circ \sigma^{^{ij\to k}}(x_{1,}x_{2,}p_{\mathrm{T}}/z,Q^{2}) \circ D_{k\to X}(z,Q^{2}) \circ FS \, e\!f\!f\!ects$$

- In absence of final state effects provides information on nuclear PDF $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\text{CTEQ6.1M}}(x,Q^2)$
- Two regimes important at LHC:
 - Shadowing and Anti-shadowing
- However, expect >Ncoll semi-hard scattering: per pPb collision (since $\sigma_{hard} > \sigma_{tot}$ in pp)
- Bulk and hard process might be correlated $f_i^p(x_{1,Q}^2; x_{1,1}, Q_1^2, x_{1,2}Q_2^2,)$

Charged particle nuclear modification factor 7

More searches for high- p_T suppression

More searches for high- p_T suppression

Inclusive J/ψ

ψ(2S) production

ALICE preliminary

- Strong suppression in forward direction
- Difference between forward and backward suppression qualitatively consistent with break-up by co-moving medium
- Consistent with the trend observed by PHENIX

Y(2S)/Y(1S) and Y(3S)/Y(1S)

CMS-HIN-13-003

- Strong suppression (even in pPb)
 - Despite similar Q²
- Final state effect?
 - Suppression in PbPb much stronger!

- Multiplicity scaling of suppression or higher Y states affect multiplicity?
- Same mechanism as in PbPb?

Two-particle angular correlations

13

CMS, PLB 718 (2012) 795

ATLAS, PRL 110 (2013) 182302

Extraction of double ridge structure 14

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - It is assumed that the 60-100% class is free of non-jet like correlations

Extraction of double ridge structure 15

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - It is assumed that the 60-100% class is free of non-jet like correlations
 - Similar analysis strategy by ATLAS

Ridge v_2 and v_3

16

Sizable values for v_2 and even v_3 reached for high-multiplicity events

Comparison v_2 and v_3 for pPb and PbPb 17

Remarkable similarity between pPb and PbPb

Second harmonic for identified particles 18

- Characteristic mass splitting observed as known from PbPb
- Crossing of proton and pion at similar p_T (2-3 GeV/c) with protons pushed further out in the pPb case
 - If interpreted in hydro picture, suggestive of strong radial flow

Second harmonic for identified particles 19

- Characteristic mass splitting observed as known from PbPb
- Crossing of proton and pion at similar p_T (2-3 GeV/c) with protons pushed further out in the pPb case
 - If interpreted in hydro picture, suggestive of strong radial flow
 - Double ridge structure also observed for low p_T HF electrons

Identified particle spectra

0.8 0.6

0.4

0.2

2

2

6

Δ

θ

 $p_{_{T}}$ (GeV/c)

8

- Spectra feature effects of radial flow
- In Pythia, these can be mimicked by Color Reconnections of strings

Initial vs final state paradigm

- Too early to make a definitive statement re IS vs FS dominance
 - Not even clear if that is asking the right question, as both can be there
- Data suggestive of FS collective-like behavior
 - However, hydrodynamics does not need to be the proper description
 - CGC (and more generally geometric scaling) can describe also a wealth of the data
- More observables: Higher order cumulants (v2{6}, v3{4}) and femtoscopic radii or rapidity dependence of ridge

Centrality dependent nuclear modification 22

How to perform a centrality dependent measurement? $R_{pA}^{cent}(p_{T}) = \frac{d N^{pA}/d p_{T}}{\langle T_{pA}^{cent} \rangle d \sigma^{pp}/d p_{T}} = \frac{d N^{pA}/d p_{T}}{\langle N_{coll}^{cent} \rangle d N^{pp}/d p_{T}}$

Centrality estimators

N_{coll} from multiplicity

- Glauber fit to multiplicity distribution (V0A) with Negative Binomial ansatz coupled to Glauber MC
 - Obtain $P(N_{part}, \mu, k)$ in centrality slices
 - Same approach as in ALICE, PRC 88 (2013) 044909
- Obtain <N_{coll}> (= <N_{part}> -1) from Glauber
 - Similar for different estimators (CL1, V0M, V0A)
 - Similar to MC closure (done with HIJING)
 - Systematic uncertainty from variation of Glauber parameters

Glauber MC Parameters $\rho(r) = \rho_0 \frac{1}{1 + \exp(\frac{r - R}{a})}$ $R = 6.62 \pm 0.06 \text{ fm}$ $a = 0.546 \pm 0.01 \text{ fm}$

Minimum NN distance: 0.4±0.4 fm

pN Cross-section

 $\sigma_{\rm PN}$ = 70 ± 5 mb

Proton radius

 $R_{p} = 0.6 \pm 0.2 \text{ fm}$

N_{coll} from multiplicity

Average N_{coll} well determined, but fluctuations within the same class are large

Bias in number of hard scatters

ALICE, preliminary

- Multiplicity fluctuations induce sizable bias on Mult/N_{part}
- All systems with fluctuations and dynamical limits show this
- Results in bias on the number of particle sources (hard scatterings)

Insights from models

• Models based on MPI include intrinsically a fluctuating number of particles sources

27

- HIJING
 - studied vs Ncoll (ie no mulitplicity bias)
 - Iow Ncoll: Impact parameter between NN increases
 - high Ncoll: Energy conservation (breakdown of factorization)

• Toy model

- Incoherent superposition of NN collisions ("Pythia6+Glauber")
- Vs centrality from mult in |η|<1.4 (ie only multplicity bias)
- Strong deviation from Ncoll scaling at low and high centralites

Insights from data

- wo-particle angular correlation analysis at low p- are ideal to statistically mini-jet production
- $p_{T} > 0.7 \text{ GeV/c}$ to string breaking)
- Analysis similar to pp (ALICE, JHEP 1309 (2013) 049) except subtraction of double ridge
- Obtain yields from fit as

$$< N_{\text{trigger}} >= \frac{N_{\text{trigger}}}{N_{\text{events}}}$$

$$< N_{\text{assoc,nearside}} >= \frac{\sqrt{2\pi}}{N_{\text{trigger}}} (A_1 \cdot \sigma_1 + A_2 \cdot \sigma_2)$$

$$< N_{\text{assoc,awayside}} >= \frac{\sqrt{2\pi}}{N_{\text{trigger}}} (A_3 \cdot \sigma_3)$$

Number of uncorrelated seeds

- In pPb, the number of uncorrelated seeds scales with VOA multiplicity
- In Pythia, the number of uncorrelated seeds scale with number of MPI

Bias in number of hard scatters

Approximate scaling (~10%) for N_{coll} between 3 and 13, and strong deviation for peripheral and central collisions

Q_{pPb} (not R_{pPb})

- Qualitatively new elements
 - For a given centrality hard processes qualitatively scale with $\langle N_{coll,cent}^{Glauber} \rangle \langle n_{hard} \rangle_{cent} I \langle n_{hard} \rangle_{pp}$
 - Mean NN impact parameter increases in peripheral collisions
 - Expect softer than average collisions?
 - Also, veto for high- p_{T} processes in low multiplicity classes
- Alternative: Include (and indicate) bias in the definition

$$Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb} / dp_T \rangle_{cent}}{dN^{pp} / dp_T}$$

Reminder: R_{pPb} should be 1 in absence of nuclear effects

Q_{pPb} (not R_{pPb})

32

Not a R_{pPb} measurement as not equals to 1 in absence of nuclear effects!!!

Spread reduces: $CL1 \rightarrow VOM \rightarrow VOA$

Jet veto present in 80-100% CL1, but not any longer in V0A

Q_{pPb} (not R_{pPb}) versus Pythia6+Glauber 33

ALICE, preliminary

Data can be described (at high p_T , and for jet veto classes) with simple model based on incoherent superposition of pp collisions (Glauber+Pythia6)

Comparison of shapes (norm at 10 GeV) 34

Bias from MPI versus fluctuations

ALICE interpretation: Biased not yet R_{pPb} measurement

ATLAS interpretation: Centrality estimator in 3.2<η<4.9 Dep. on geometrical model

Fluctuations: Ω vs σ

From A. Morsch (HP13)

36

Geometrical fluctuations described by overlap function (eikonal) T_{N} . Cross-section itself does not fluctuate (since = *flux* (db²) x probability).

Only a question of terminology ?

Conclusions

- Minbias measurements on various probes in pPb (h, jets, J/ Ψ , Y, Ds and Bs) indicate that effects in (central) PbPb are different or stronger
 - Models, in particular those based on shadowing, can typically describe data
 - Exception CMS R_{pPb} which we need to understand quickly
- Two-particle correlation and PID results challenge the interpretation of initial and final state effects in pp, pPb PbPb
 - Many observables exhibit features thought to be characteristic for AA
 - Still too early to make definitive statements about origin
- Data exhibit strong correlations between the hard scattering and the underlying event which needs to be further addressed and understood
 - Multiplicity dependent particle production (also in pp)
 - Interplay between soft and hard processes
- Centrality in pPb is still an issue
 - Continue open discussions between experiments and with theorists

Thanks to the LHC for impressive pPb operations and to the experimental collaboration for using their material

Extra

Charged dijet acoplanarity

Dijet η_{dijet} distribution

- Di-jet η sensitive to nuclear PDF
- Good agreement with EPS09
 - Data slightly lower in Anti-Shadowing and EMC region

Nuclear modification for Y(1S)

ALICE, preliminary

- Expect less shadowing and more anti-shadowing
- Some tension with EPS09 expectation, however large uncertainties

Average p_T versus N_{ch}

рр

- Within PYTHIA model increase in mean p_T can be modeled with Color Reconnections between strings
- Can be interpreted as collective effect (e.g. Velasquez et al., arXiv:1303.6326v1)

• pPb

- Increase follows pp up to N_{ch} ~14 (90% of pp cross section, pp already biased)
- Glauber MC (as other models based on incoherent superposition) fails
- Like in pp: Do we need a (microscopic) concept of interacting strings?
- EPOS LHC which includes a hydro evolution describes the data (also pp)

PbPb

• As expected, incoherent superposition can not describe data

Forward-to-midrapidity correlations

 Extension of ALICE measurement to use as trigger particles "muons" reconstructed in the muon spectrometer (-2.5<η<-4)

- Probes smaller x in Pb
- Hint for a near-side structure in 0-20% after subtraction of 60-100%
 - Caveat: Correction of muon (trigger) particles to primary hadrons tricky

Femtoscopic size of system

In a hydrodynamic scenario the pPb radii are expected to deviate from the pp line, unlike in the CGC case which predicts them to be the same

Non-femtoscopic background

$$C_{2}(p_{1}, p_{2}) = \frac{N_{2}(p_{1}, p_{2})}{N_{1}(p_{1})N_{1}(p_{2})}$$
$$q_{inv} = \sqrt{-(p_{1} - p_{2})_{\mu}(p_{1} - p_{2})^{\mu}}$$
$$k_{T} = \frac{|\mathbf{p}_{T,1} + \mathbf{p}_{T,2}|}{2}$$

- In small systems, the treatment of non-femtoscopic background is important
- One way: Divide out background obtained from models
- Problem for pPb: No generator found to consistently describe the data at moderate to large q

Using 3-pion cumulants

$$C_{3}(p_{1}, p_{2}, p_{3}) = \frac{N_{3}(p_{1}, p_{2}, p_{3})}{N_{1}(p_{1})N_{1}(p_{2})N_{1}(p_{3})}$$
$$Q_{3} = \sqrt{q_{inv,12}^{2} + q_{inv,13}^{2} + q_{inv,23}^{2}}$$
$$K_{t,3} = \frac{|\mathbf{p}_{\mathrm{T},1} + \mathbf{p}_{\mathrm{T},2} + \mathbf{p}_{\mathrm{T},3}|}{3}$$

- Use of 3-pion cumulants (technique from ALICE, arXiv:1310.7808)
 - Enhances QS signal
 - Suppresses (2-pion) background

46

Allows extraction of radii without MC

Near-side yield

- In pPb, no bias on the near-side per trigger yield except for low multiplicities
- Bias to softer than average collisions
- Caveat: Different event selection than in pp

Away-side yield

- In pPb, no bias on the away-side per trigger yield except for low multiplicities
- Bias to softer than average collisions
- Caveat: Different event selection than in pp

Number of uncorrelated seeds

- In pPb, number of uncorrelated seeds scales with V0A multiplicity
- In pp, saturation is reached for highest multiplicity (limited number of MPIs)
 - Caveat: Different selections

N_{coll} from slow neutrons

Ongoing effort to improve fit quality and reduce dependence on free parameters

- Glauber MC now coupled to a model for slow nucleon emission
- Phenomenological model based on data at lower energies (F. Sikler, hep-ph/0304065)
 - Properties of emitted nucleons only weekly dependent on energy
 - Reproduces main features of ZNA energy spectrum

Bias in number of hard scatters

51

Bias on number of hard scatters in peripheral and central collisions

Comparison of shapes (norm at 10 GeV) 52

R_{pPb} (ATLAS)

Result depends on model of geometry

Comparison charged particle R_{pPb}

Good agreement between experimental results (up to 20 GeV/c) despite different event selection (and different kinematic cuts)

Comparison of minbias measurements 55

Centrality dependent dN/dn

- dN/dn extracted in slices of forward activity
- Relation via Npart w/wo fluctuations makes interpretation geometry-model dependent

R_{pPb} jets (vs Pythia)

ATLAS-CONF-2013-105

Centrality of R_{pPb} jets (vs Pythia)

ATLAS-CONF-2013-105

R_{CP} jets (vs Pythia)

- Almost linear scaling of normalized yields with normalized multiplicity
 - In pp, J/ψ (and D-mesons) consistent with MPI picture
 - In PbPb see deviation from MPI scaling
- As for dijets, strong correlation between hard scattering and UE

Charged particle dN/dη and dN/dp_T spectra 61

pPb and Pbp collisions at the LHC

- 2-in-1 design
 - Identical bending field in two beams
 - Locks the relation between the two beams:
 - p (Pb) = Z p(proton)
 - Different speeds for the two beams!
 - Adjust length of closed orbits to compensate different speeds
 - Different RF freq for two beams at injection and ramps
- Short low lumi pilot run on 12/9/2012
- First run in Jan-Feb 2013: ~ 30/nb
 - Center-of-mass energy 5.02 TeV
 - Center-of-mass with $\Delta y=0.46$ wrt lab system in direction of proton beam
 - Two beam configurations were provided

