Event selection and centrality bias in pA collisions (*)

Constantin Loizides (LBNL) 04 March 2015

> (*) based on talk by A.Morsch at IS2014 and ALICE paper arXiv:1412.6828 on pPb centrality

RBRC workshop on "Collectivity in small colliding systems"

2 Basic procedure

- Impact parameter not observable
 - And for small systems only weakly correlated to number of participants (N_{part})
- Classify events in terms of event activity (or centrality estimator E)
 - E should vary monotonously with number of participants
 - Multiplicity, energy, slow neutron energy
 - Order as percentile of cross section
- Establish relation to Glauber model parameters (N_{part}, N_{coll}) via particle production model

- 3 Essential requirements
- Demonstrate correlation of measurement to collision geometry
 - Via correlation of observables that are causally disconnected after collision
- Demonstrate completeness
 - Are there other relevant geometry parameters that are biased by the selection wrt minimum bias?
 - What are their possible influence on centrality dependent measurements?
 - Importance for p(d)A: small dynamic range leads to large fluctuations

4 Example large system: ALICE Pb+Pb

Miller et al., Ann. Rev. Nucl. Part. Sci 57 (2007) 205 ALICE, Phys. Rev. C 88 (2013) 044909

10-2

10-3

10-4

10-5

10-6

ZDC vs V0 Performance, Nov 2010 Forward neutrons Correlate particle yields from 10% 5% 20% 5000 disconnected parts of phase 4000 3000 space 2000 Correlation arises from 1000 common dependence on 5000 10000 15000 collision impact parameter Events ALICE Performance Pb-Pb at\s_{NN} = 2.76 TeV Data 102 Glauber fit 10² NBD x [f N_{part} + (1-f)N_{coll}] Z⁴⁰⁰ Glauber-MC Glauber-MC ultiplicit f=0.806, u=29.003, x=1.202 Pb-Pb Vs_{NN} = 2.76 TeV Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 10 1000 500 15000 300 10000 200 40-50% 30-40% 50-60% 20-30% 0-20% 5-10% 0-5% 10⁻¹ 5000 100 5000 10000 15000 0 20000 100 200 300 400 VZERO Amplitude (a.u.) 10 15 Npart b (fm) Charged hadrons $\eta \sim 3$

5 Example small system: PHENIX d+Au

• Probability for Ncoll binary collisions $\pi(N_{coll})$ from Glauber

- Charge distribution for one collision (Negative Binomial) $P_{\text{NBD}}(n; \mu, k) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \frac{(\frac{\mu}{k})^n}{(\frac{\mu}{k+1})^{n+k}}$
- For N_{coll} collisions, assume <BBC>~<Ncoll>_{10¹} $P(BBC|N_{coll}) = P_{NBD}(BBC; N_{coll} \times \mu, N_{coll} \times k)$
- Fit to measured distribution $P_{\text{BBC}}(BBC) = \Sigma_1^{N_{\text{coll}}^{\max}} \pi(N_{\text{coll}}) P(BBC|N_{\text{coll}})$
- For fixed k and μ $P(N_{\text{coll}}|BBC) = P(BBC|N_{\text{coll}})\pi(N_{\text{coll}})/P(BBC)$

PHENIX, PRC 90 (2014) 034902

6 High- p_{T} bias factor correction

- Presence of high p_T particle at central rapidity increases BBC charge
- Quantify bias using pp data coupled with the Glauber model
 - And check with HIJING

Centrality (%)	Glauber + NBD	$\texttt{HIJING } 1 \leqslant p_T < 5$
0-20	0.94 ± 0.01	0.951 ± 0.001
20-40	1.00 ± 0.01	0.996 ± 0.001
40-60	1.03 ± 0.02	1.010 ± 0.001
60-88	1.03 ± 0.06	1.030 ± 0.001

7 Correlation with d-dissociation

Raw FTPC-Au Nch

8 Remarks

- Need Glauber fit with specific particle production model because of defining centrality and determining N_{coll} from the same estimator
- Biases can be consequence of
 - Correlations of collision parameters other than N_{part}
 - Correlations induced after collision (eg. jet fragmentation in the example of PHENIX)
- Bias corrections are not necessarily corrections of N_{coll}
 - Physics origin has to be understood

Look at non-trival extensions of the Glauber model

9 Glauber extensions

- Glauber-Gribov color fluctuations
 - Size of proton varies e-by-e
 - Configuration frozen for a single p-A collision
 - Parameter Ω equals width of Gaussian fluctuations
- HIJING Glauber
 - Mean number of hard scatterings (n_{hard}) depends on NN overlap
 - No fluctuations of spatial distribution
 - Only Poisson fluctuations of n_{hard}
- Flickering of the interaction strength
 - Generalized gluon distribution and fluctuations

Alvioli et al., PRC 90 (2014) 034914

10 Glauber extensions

- Glauber-Gribov color fluctuations
 - Changes π(N_{coll})

- HIJING Glauber
 - Does not change $\pi(N_{coll})$
 - Provides a correlation between hard and soft particle production
 - Long range correlation via b_{NN}
 - Note: Large n_{hard} values suppressed by energy conservation

Geometric bias / Jia, PLB 681 (2009) 320

11 Glauber-Gribov

- Glauber-Gribov fits slightly worse
- However, extracted parameters closer to WN expectation

12 Centrality dependent dN/dη

• Presence of bias open question

13 Centrality dependent measurements

- Rich phenomenology if one trusts the measurement of $N_{\mbox{\scriptsize coll}}$
- However, systematics of centrality determination itself has to be discussed first in the context of particle production models

14 Kinematic bias on centrality from jets

Taking into account energy-momentum conservation in the proton in a toy simulation of pp (hard) PYTHIA plus pPb (UE) HIJING events describes main features of data

15 Multiple parton interactions (MPI) Skands, arXiv:1207.2389

- Naive factorization $\langle n_{2\to 2} \rangle = \frac{\sigma_{2\to 2}}{\sigma_{\text{tot}}} >1$ at pert. scale $P_n = \frac{\langle n_{2\to 2} \rangle^n}{n!} exp(-\langle n_{2\to 2} \rangle)$
- In reality
 - Color screening to regularize hard cross section at low p_T
 - Cut-off at high n because of energy conservation
 - Coherence between scatters
 - Impact parameter dependence $n_{\rm hard}(b) = \sigma_{\rm hard} T_{\rm p}(b)$
 - Leads to a correlation between hard and soft as in AA

16 Scaling of hard probes with multiplicity

17 Nucleon-nucleon impact parameter studies Morsch, IS2014

(obtained from slicing superposition of N_{coll} pp collisions in 2.8< η <5.1)

Leads to long range (η) correlations. How much of this effect survives in pPb?

18 Energy and species dependence

Morsch, IS2014

Bias on n_{hard} O(30%) at the LHC, and only O(5%) at RHIC

Bias on n_{hard} O(30%) at the LHC, And decreases with projectile size

Deviation from binary scaling: $\left. \frac{dN}{p_{\rm T}} \right|_{\rm pA} = N_{\rm coll} F \left. \frac{dN}{p_{\rm T}} \right|_{\rm pp}$

- Correlation between hard and soft qualitatively reproduced with GPythia
- Modification approaches unity as η separation between centrality and p_T

-3.7< η <-1.7&&2.8< η <5.1 Charged particles $|\eta| < 0.3$ VOM Syst. on $\langle T_{pA} \rangle$ Syst. on normalization $\downarrow \downarrow \downarrow \downarrow$

- Correlation between harc and soft qualitatively reproduced with GPythia ^{0.5} ^{2.5}
- Not a bias on N_{coll}
- Modification approaches unity as η separation between centrality and pincreases

ALICE, arXiv:1412.6828

ATLAS-CONF-2013-107

21 Forward neutron energy vs multiplicity

Correlation between forward neutron energy and multiplicity?

22 Correlation between ZNA and VOA

Centrality (%)

23 Scaling of particle production

Correlation between causally disconnected observables (slow neutrons vs multiplicity) → connection to geometry

24 Centrality from Hybrid method

 Assume ZN is bias free + define centrality classes
 Construct similar model as for the Glauber fits

Resulting values within at most 10%

25 QpPb factors with hybrid method

Hybrid method

- Charged particle $Q_{_{DPh}}$ consistent with unity at high $p_{_{T}}$
- Cronin peak develops with multiplicity

26 Average QpPb

27 dN/dη measurements

28 Wrt discussion of this morning

29 Conclusions

- Question of "bias vs no-bias" in general has no definite answer
- Systematics of centrality measurement and interpretation of data must be done in the same framework
- Using the hybrid approach avoids the bias (but at expense of limited dynamical range)

30 Extra

31 Centrality dependent nuclear modification

How to perform a centrality dependent measurement? $R_{pA}^{cent}(p_{T}) = \frac{d N^{pA}/d p_{T}}{\langle T_{pA}^{cent} \rangle d \sigma^{pp}/d p_{T}} = \frac{d N^{pA}/d p_{T}}{\langle N_{coll}^{cent} \rangle d N^{pp}/d p_{T}}$

32 Multiplicity bias

33 Geometry bias

34 Multiplicity scaled by different Npart

35 Cronin and high- p_T region vs Nch

ALICE, arXiv:1412.6828

36

37 RpPb measurement

ATLAS-CONF-2013-107

38 J/ Ψ and Ψ (2S) suppression

- $J/\psi \rightarrow \mu\mu$: Multiplicity dependent suppression in p-going direction, and no suppression in Pb-going direction
 - Consistent with shadowing
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
 - Needs additional effect (Final state?)