Results from ALICE related to collectivity C.Loizides (LBNL)

2

The Berkeley School 2014 School of collective dynamics in high energy collisions June 9-12,2014

O

-

http://tbs2014.lbl.gov

Yangshuo river 2

One of the very interesting interactions with Wit related to hydrodynamics (Nov, 2006)

Outline

- ALICE detector
- The sQGP paradigm at RHIC
- Results related to collective effects in PbPb
- Results related to collective effects in pPb
- Summary/Questions

ALICE detector

ALICE acceptance

5

*) Not full 2π

Low material budget for inner barrel

- Tomography for inner barrel using conversions
- Integrated radiation length for R<180cm
 - 11.4 \pm 0.5% X₀ from comparison of MC and data
 - ~5x less than ATLAS/CMS (at $|\eta| < 1$)
- Work ongoing to further reduce uncertainty and improve understanding for R>180cm and $|\eta|$ >0.9

Main features and performance

arXiv:1402.4476

• Excellent+unique PID performance (practically all known techniques)

Main features and performance

arXiv:1402.4476

- Excellent+uniquePID performance (practically all known techniques)
- Excellent vertexing and tracking efficiency down to very low $p_{\scriptscriptstyle T}$
- Quarkonia (mid- and forward rapidity) down to zero $p_{\scriptscriptstyle T}$

Reminder: Scientific approach

pA: More than just a control experiment 10

- Study pA to benchmark AA
 - Measure properties of hard processes to disentangle initial from final state effects
 - Characterize nuclear PDFs at small-x
- Study high-density QCD in saturation region
 - Saturation scale (Q_s) enhanced in nucleus ($\sim A^{1/3\lambda}$)
 - In perturbative regime at the LHC: $Q_s \sim 2-3$ GeV/c
 - Qualitatively expect x~10⁻³ at η=0 (vs 0.01 at RHIC)
- Study interplay of different concepts
 - pA contains elements of pp and AA

RHIC's major discoveries

- Discovery of strong elliptic flow
 - Larger than possible from hadron gas models alone
 - Even huge cross sections needed to describe with pQCD 2 → 2 processes
 - Described by (ideal) hydrodynamics using lattice equation of state

- Discovery of strong hadron suppression (jet quenching)
 - Final state effect due to interactions with hot medium?
 - Role of initial state and cold nuclear medium effects?

What's needed partonically to get v_2 ? 12

Parton transport model: Bolzmann equation with 2-to-2 gluon processes

D.Molnar, M.Gyulassy NPA 697 (2002)

HUGE (hadronic!!!) cross sections needed to describe v₂

Need large opacity to describe elliptic flow, ie elastic parton cross sections as large as inelastic the proton cross-section.

Elliptic flow and hydrodynamics

dAu control experiment at RHIC

Jet quenching is a final state effect

Eventually lead to a new paradigm

Relativistic Heavy Ion Collider (RHIC) • Brookhaven National Laboratory, Upton, NY 11974-5000

RHIC whitepapers: NPA 757 1-283 (2005)

- Manifestation of strong coupled QGP
- Not freely roaming quarks and gluons
- Instead, strongly coupled reaching almost the minimum value of shear viscosity to entropy density ratio (η/s)

Similar properties at the LHC

Strong elliptic flow and strong (di-)jet quenching

Results related to collectivity from PbPb collisions at the LHC

Initial and final state anisotropy

Flow methods

$$v_2 = \langle \cos(2\varphi - 2\Psi_R) \rangle$$

Extract from data or use only relative angles

Two-particle cumulant

Can suppress "non-flow"

$$v\{2\} = \sqrt{\langle cos(2\phi_1 - 2\phi_2) \rangle}$$

Measures:

$$v\{2\}^2 = \langle v \rangle^2 + \sigma_{v_2}^2 + \delta$$

$$v \gg 1/\sqrt{M}$$

Two-particle angular correlations

Multi-particle correlations: v_2 {4} and higher 21

- Cumulants to extract genuine k-particle correlations excluding those from k-1 particles
- To first order for k=2 and k=4

 $\mathbf{v}_{2} \{2\}^{2} = \langle \mathbf{v}_{2} \rangle^{2} + \sigma_{\mathbf{v}_{2}}^{2} + \delta_{2} \\ \mathbf{v}_{2} \gg 1/\sqrt{M}$

 $v_{2}{4}^{2} = \langle v_{2} \rangle^{2} - \sigma_{v_{2}}^{2}$ $v_{2} \gg 1/M^{3/4}$

- eg. M=100, v₂>>0.03
- Care is needed when averaging over M, as cumulants are also sensitive to multiplicity fluctuations

Four particle correlations (Q-cumulant method):

$$\begin{array}{c} \varphi_{1} \\ \varphi_{2} \\ \varphi_{2} \\ \varphi_{2} \end{array} + \begin{array}{c} \varphi_{3} \\ \varphi_{2} \\ \varphi_{2} \\ \varphi_{2} \end{array} + \begin{array}{c} \varphi_{3} \\ \varphi_{2} \\ \varphi_{3} \\ \varphi_{2} \\ \varphi_{$$

Multi-particle correlations (cumulant) studies extract the genuine multi-particle correlation

Multi-particle correlations: v_2 {4} and higher 22

Multi-particle correlation v2{n} results converge for n≥4, indicating that non-flow contribution is negligible for n≥4

Integrated elliptic flow and hydro 23

Measured v₂ well within the range of viscous hydro predictions

Radial flow and kinetic freeze-out

- Different shape for particles with different masses indicate radial flow
- Hydro calculations can describe the data
- Blast-wave fits assuming a boosted thermal source with a common temperature and radial velocity

BW model: PRC 48, 2462 (1993)

Radial flow

 $p_T^{flow} = p_T + m \beta_T^{flow} \gamma_T^{flow}$

Radial flow and kinetic freeze-out 25

- Different shape for particles with different masses indicate radial flow
- Hydro calculations can describe the data
- Blast-wave fits assuming a boosted thermal source with a common temperature and radial velocity

BW model: PRC 48, 2462 (1993)

Radial flow

$p_T^{flow} = p_T + m \beta_T^{flow} \gamma_T^{flow}$

- Strong radial flow up to $\beta_{LHC,central} = 0.65c$
 - $\beta_{LHC,central} = 1.1 \beta_{RHIC,central}$
- Similar kinetic freeze-out T_{kin}

 $E\frac{d^3N}{dp^3} \sim f(p_t) = \int_0^R m_T K_1(m_T \cosh\rho/T_{fo}) I_0(p_T \sinh\rho/T_{fo}) r dr \quad \text{where } m_T = \sqrt{m^2 + p_T^2}; \ \beta_r(r) = \beta_s(\frac{r}{R})^n; \ \rho = \tanh^{-1}\beta_r.$

PRL 109 (2012) 252301

Identified particle elliptic flow versus $p_T = \frac{26}{26}$

The Φ meson

- At low p_{τ} follows mass ordering
- At high p_{τ} close to p in central and close to π in mid-central
- In central collisions p and Φ have similar shape up to ~4 GeV/c.
 - As expected from radial flow
- Mass (and not number of constituent quarks) scaling drives the v₂ and spectra in central collisions

Higher harmonics and viscosity

Initial spatial anisotropy not smooth, leads to higher harmonics / symmetry planes.

$$\frac{dN}{d\phi} \sim 1 + \frac{2v_2}{\cos[2(\phi - \psi_2)]} + \frac{2v_3}{\cos[3(\phi - \psi_3)]} + \frac{2v_4}{\cos[4(\phi - \psi_4)]} + \frac{2v_5}{\cos[5(\phi - \psi_5)]} + \dots$$

Ideal hydrodynamical models preserves these "clumpy" initial conditions

Higher harmonics and viscosity

Initial spatial anisotropy not smooth, leads to higher harmonics / symmetry planes.

$$\frac{dN}{d\phi} \sim 1 + \frac{2v_2}{\cos[2(\phi - \psi_2)]} + \frac{2v_3}{\cos[3(\phi - \psi_3)]} + \frac{2v_4}{\cos[4(\phi - \psi_4)]} + \frac{2v_5}{\cos[5(\phi - \psi_5)]} + \dots$$

Initial state fluctuations and flow ridges 31

Structures seen in two particle correlations are naturally explained by measured flow harmonics assuming fluctuating initial conditions.

Mass-dependent splitting of v_2 and v_3 32

- Particle mass dependent splitting from radial flow characteristic for v₂
- Can be described by hydrodynamical models (+ hadronic afterburners)

- Similar mass splitting for v₃
- Qualitatively described by hydrodynamical models (+ hadronic afterburners)
- Provides additional constraints on η/s

D-meson elliptic flow

Even charm mesons exhibit elliptic flow

Control experiment: p+Pb collisions at the LHC

pPb and Pbp rapidity sign convention

- Center-of-mass energy 5.02 with $\Delta y=0.465$ wrt lab system in direction of proton beam
- Usually results reported such that positive rapidity corresponds to proton direction and negative rapidity to Pb direction
 - Be aware that some results (in particular correlation results) are done in the laboratory frame

Nuclear modification factor

$$R_{\rm pA}^{\rm X}(p_{\rm T}) = \frac{{\rm d} N_{\rm X}^{\rm pA}/{\rm d} p_{\rm T}}{\langle N_{\rm coll} \rangle {\rm d} N_{\rm X}^{\rm pp}/{\rm d} p_{\rm T}}$$

Average number of collisions from Glauber (or cross sections): $\langle N_{coll} \rangle = A \sigma_{pp} / \sigma_{pA} \approx 6.9$

$$\frac{\mathrm{d}\,\sigma^{^{pA\to X}}}{\mathrm{d}\,p_{\mathrm{T}}} \propto f_{i}^{p}(x_{1,}Q^{2}) \circ f_{j}^{A}(x_{2,}Q^{2}) \circ \sigma^{^{ij\to k}}(x_{1,}x_{2,}p_{\mathrm{T}}/z,Q^{2}) \circ D_{k\to X}(z,Q^{2}) \circ FS \, e\!f\!f\!ects$$

- In absence of final state effects provides information on nuclear PDF $f_i^A(x,Q^2) \equiv R_i^A(x,Q^2) f_i^{\text{CTEQ6.1M}}(x,Q^2)$
- Two regimes important at LHC:
 - Shadowing and Anti-shadowing

Charged particle R_{DPb}

 p_{τ} (GeV/c)

Charged particle R_{pPb}

38

Extended measurements up to 50 GeV/c: No change of message

No significant effects at high- p_{T}

Event multiplicity/activity classes in pPb 40

- Define event classes by slicing various multiplicity related distributions
 - Every experiment uses its own selection and usually provides (corrected) multiplicity at mid-rapidity
 - Event class definition (aka event activity) may matter for particular measurements
 - Systematics from different selections
- Relation of multiplicity to centrality
 via Glauber model not straight-forward
 - Correlation between collision geometry and multiplicity not as strong as in AA
 - Use minimum-bias collisions instead $(N_{coll} = A \sigma_{pp} / \sigma_{pA})$
 - Centrality discussion (later)

Di-Hadron Correlations (DHC)

- CMS: pp, pPb at LHC
 - Long-range near-side correlations (ridge) appear at high-multiplicity
 - Collective effects in pp and pPb?
 - CGC initial state effects?

41

- STAR: dAu at RHIC
 - Back-to-back (jet-like) correlations in forward π⁰ correlations disappear in high-multiplicity events
 - Compatible with CGC predictions
- LHC mid- and RHIC forward-η probe a similar x regime

STAR, arXiv:1005.2378

DHC: Correlation measure

Associated yield per trigger particle (with p_T^{trig}>p_T^{assoc})

 $\frac{1}{N_{\rm trig}}\frac{{\rm d}^2N_{\rm assoc}}{{\rm d}\Delta\eta\;{\rm d}\Delta\varphi}=\frac{S\left(\Delta\eta,\Delta\varphi\right)}{B\left(\Delta\eta,\Delta\varphi\right)}$

• Signal (same event) pair yield

$$S\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{N_{\rm trig}} \frac{{\rm d}^2 N_{\rm same}}{{\rm d}\Delta\eta\,{\rm d}\Delta\varphi}$$

• Definition as ratio of sums is multiplicity independent

$$\frac{N_{pair}}{N_{trig}} = \frac{\sum_{i=1}^{N_{evt}} \sum_{j=1}^{N_{source}} \frac{1}{2} n_{ij} (n_{ij} - 1)}{\sum_{i=1}^{N_{evt}} \sum_{j=1}^{N_{source}} n_{ij}}$$
$$= \frac{N_{evt} \langle N_{source} \rangle \frac{1}{2} \langle n(n-1) \rangle}{N_{evt} \langle N_{source} \rangle \langle n \rangle}$$
$$= \frac{1}{2} \frac{\langle n(n-1) \rangle}{\langle n \rangle}$$

• Background (mixed event) pair yield

$$B\left(\Delta\eta,\Delta\varphi\right) = \frac{1}{B\left(0,0\right)} \frac{\mathrm{d}^2 N_{\mathrm{mixed}}}{\mathrm{d}\Delta\eta\,\mathrm{d}\Delta\varphi}$$

ALICE, PLB 719 (2013) 29

DHC: Multiplicity dependence

ALICE, PLB 719 (2013) 29

43

- Low-multiplicity p-Pb (60-100%)
 - pp-like (jet-like) correlation structures

- High-multiplicity p-Pb (0-20%)
 - Near-side ridge appears (first seen in CMS)
 - Higher yields on near- and away-side

DHC: Multiplicity dependence

ALICE, PLB 719 (2013) 29

- Compare associated yield in pPb multiplicity classes and pp
 - Project to $\Delta \phi$ over $|\Delta \eta| < 1.8$
 - Subtract baseline at $\Delta \phi \sim 1.3$
- Low multiplicity pPb is similar to pp (at 7 TeV)
- Yield rises on near and away side with increasing multiplicity
- In contrast with away-side suppression observed in dAu at RHIC at forward η (similar x)

Extraction of double ridge structure 45

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - Assumed that 60-100% class is free from non-jet like correlations

Extraction of double ridge structure 46

- Extract double ridge structure using a standard technique in AA collisions, namely by subtracting the jet-like correlations
 - Assumed that 60-100% class is free from non-jet like correlations
- The near-side ridge is accompanied by an almost identical ridge structure on the away-side

Dependence on event selection

47

ALICE, PLB 719 (2013) 29

- A residual jet peak at (0,0) remains even after subtraction of 60-100% from the 0-20% multiplicity class
- Effect at large $|\Delta\eta|$ stable using different event class definition

Ridge v_2 and v_3 and hydrodynamics 4

ALICE, PLB 719 (2013) 29

 Sizable values for v₂ and even v₃ reached for high-multiplicity events

Ridge v_2 and v_3 and hydrodynamics 49

- Sizable values for v₂ and even v₃ reached for high-multiplicity events
- Results qualitatively consistent with viscous hydrodynamic calculations with initial state fluctuations from Glauber
 - Caveat: Calculations in pPb less robust wrt changes of assumptions than in AA

Bozek and Broniowski, PRC 88 (2013) 014903

Genuine four particle correlations present in pPb, but magnitude smaller than in PbPb (which is driven also by the event plane)

Multi-particle correlations: v_2 {6}

51

Submitted to arXiv today

Results consistent with $v_2\{6] \approx v_2\{4\}$ in pPb, but not enough events to determine whether $v_2\{6\}$ is finite or not.

Multi-particle correlations: CMS

Multi-particle correlation results are the same within 10% in pPb

Multi-particle correlations: v_3 {2}

53

Submitted to arXiv today

- Large dependence on $\Delta\eta$ gap (as also for v_2 {2})
- Same dependence on Nch as in PbPb
 - Implications for understanding of initial state?

Identified particle v₂

- Per-trigger yield with identified particles (π , K, or p) as associated particles of trigger particles (h)
 - Identified particle v₂: $v_n^i \{2PC\} = V_{n\Delta}^{h-i} / \sqrt{V_{n\Delta}^{h-h}}$
- Same strategy as before: Subtract low- (60-100%) from high-multiplicity (0-20%), then Fourier decompose long |Δη| range

Identified particle v₂

55

- Characteristic mass splitting observed as known from PbPb
- Crossing of proton and pion at similar p_{T} (2-3 GeV/c) with protons pushed further out in the pPb case
 - If interpreted in hydro picture, suggestive of strong radial flow

Identified particle v_2 versus hydro models 56

- Characteristic mass splitting observed as known from PbPb
- Crossing of proton and pion at similar p_T (2-3 GeV/c) with protons pushed further out in the pPb case
 - If interpreted in hydro picture, suggestive of strong radial flow
- Models that include a hydro phase can describe these features

Identified particle v₃ (CMS)

57

Crossing at around 2 GeV/c, same physics origin for v_3 and v_2 in pPb as well.

Identified particle p_T spectra

58

Identified particle p_T spectra

59

Identified particle spectra

 $p_{_{\rm T}}$ (GeV/c)

radial flow picture (also in pp)

The Cronin peak region

61

- "Cronin peak" from 2-6 GeV/c
 - Dependence on particle type
 - Enhancement dominated by protons
- Nowadays would attribute effect to be due to radial flow?
 - However, weak for the Φ

Intensity interferometry (HBT)

$$C_{\rm f}(\mathbf{q}) = \int S(r, \mathbf{q}) |\Psi(\mathbf{q}, r)|^2 d^4 r$$

q=p₁-p₂ r=r₁-r₂

- Two particles whose origin or propagation are correlated exhibit wave properties in the relative measures (e.g. momentum difference)
- Correlation sources range from actual interactions (Coulomb, Strong) to quantum statistics (QS) correlations
- Measurements of two sameparticle correlations at low momentum allows to access the space-time characteristics of the source

- At freeze-out the characteristic distance of particles is O(fm)
- Need Δp<0.5 GeV/c so that ΔxΔp~1 to be sensitive to BE correlations
- Expect a moving source to look smaller than at rest
 - Study source as function of pair transverse momentum
 - $k_{T} = |p_{T,1} + p_{T,2}|/2$

Intensity interferometry: Rinv

$$C_{\rm f}(\mathbf{q}) = \int S(r, \mathbf{q}) |\Psi(\mathbf{q}, r)|^2 d^4 r$$

q=p₁-p₂

• Experimentally measure (in bins of k_T) $C_2(q) = \frac{N_2(p_1, p_2)}{N_1(p_1)/N_1(p_2)}$

 Parameterize the source (and address background)

$$C_2(q) = \mathcal{N}[(1 - f_c^2) + f_c^2 K_2(q) C_2^{QS}(q)] B(q)$$

Correlated fraction + interaction term

$$C_2^{\text{QS}}(q) = 1 + \lambda E_w^2(R_{\text{inv}} q) e^{-R_{\text{inv}}^2 q^2}$$

in PRF $(p_1+p_2=0)$

Non-femtoscopic

background

Intensity interferometry: 3d radii

$$C_{\rm f}(\mathbf{q}) = \int S(r, \mathbf{q}) |\Psi(\mathbf{q}, r)|^2 d^4 r$$

q=p₁-p₂

- Experimentally measure (in bins of k_T) $C_2(q) = \frac{N_2(p_1, p_2)}{N_1(p_1)/N_1(p_2)}$
- Parameterize the source (and address background)

$$C_2(q) = \mathcal{N}[(1 - f_c^2) + f_c^2 K_2(q) C_2^{QS}(q)] B(q)^{\text{long}}$$

Correlated fraction + interaction term

$$C_2^{\rm QS}(q) = 1 + \lambda \exp(-\mathsf{R}_{\rm out}^2 \mathsf{q}_{\rm out}^2 - \mathsf{R}_{\rm side}^2 \mathsf{q}_{\rm side}^2 - \mathsf{R}_{\rm long}^2 \mathsf{q}_{\rm long}^2)$$

in LCMS ($p_{L,1}+p_{L,2}=0$)

64

∕ out

 p_2

side

k_T dependence of radii in PbPb

65

The expected trends with k_{T} are clearly observed in central PbPb

k_{T} dependence of radii in pPb

66

- Similar trends seen for pPb
- Also for high multiplicity pp
 - pp similar to pPb, but devil in details

System comparison: R_{inv} vs N_{ch}

- Exhibit different trend (with linear fit over measured region)
- Radii in pp and pPb at similar measured Nch are with 5-15% while larger difference (up to 30-50%) between pPb and PbPb
- Not much room for a hydro-dynamical expansion in pPb beyond what might already be there in pp

Comparison with IP-Glasma

• Similarity between radii in pPb and pp can be described by Yang-Mills evolution alone

68

 They also can be reproduced by adding a hydrodynamic phase

GLASMA points are first scaled such that the calculations in pp match the ALICE pp data. Scale = 1.15. GLASMA calculations have uncertainty due to infrared cutoff (m=0.1 GeV).

Initial system size scaling across systems 69

arXiv:1404.5291

 $\frac{1}{\bar{R}} = \sqrt{\left(\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2}\right)}$

Scaling with \overline{R} across systems: Implies evidence for radial expansion

(proxy for gradients in initial size)

And the jet at low p_T ?

- Ridge and jet seem additive in 2PC
- Subtract ridge to obtain jet yields
- Resulting jet yields are constant over ~60% of the pPb cross section
 - No modification even at low p_T
- Consistent with picture of minijets in pPb from independent superpositions of NN collisions with incoherent fragmentation

$\psi(2S)$ production in p-Pb

71

- ψ(2S) more suppressed than J/ψ: ^y_{cms}
 Not expected by initial state + CNM effects and coherent energy loss
- Stronger relative suppression in backward direction: Qualitatively expected from break-up due to comoving system
- But also strong suppression in forward direction
 - Final state effects?

Centrality dependent nuclear modification 72

How to perform a centrality dependent measurement? $R_{pA}^{cent}(p_{T}) = \frac{dN^{pA}/dp_{T}}{\langle T_{pA}^{cent} \rangle d\sigma^{pp}/dp_{T}} = \frac{dN^{pA}/dp_{T}}{\langle N_{coll}^{cent} \rangle dN^{pp}/dp_{T}}$
Nuclear geometry and collision centrality 73

Nuclei are "macroscopic": Characterize collisions by impact parameter

- Correlate yields from disconnected parts of phase space
 - Correlation arises from common dependence on collision impact parameter
- Order events by centrality metric
 - Typically, classify them as "ordered" fraction of total cross section
 - eg. 0-5% most central
 - Number of participants (volume)

Centrality from 75 multiplicity

Using hits at mid-rapidty (CL1)

- Due to small dynamic range several biases are present
 - Multiplicity bias
 - Jet veto bias
 - Geometrical bias
- Include (and indicate) bias in the definition

 $Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb} / dp_T \rangle_{cent}}{dN^{pp} / dp_T}$

Not R_{pPb} as not 1 in absence of nuclear effects

Using amplitudes at forward rapidity (V0A)

• Due to small dynamic range several biases are present

30

N_{part}

Multiplicity 120000

10000

5000

10⁴

10³

10²

10

Glauber-MC Pb-Pb $\sqrt{s_{MN}}$ = 2.76 TeV

200

100

300

400

N_{part}

10

- Multiplicity bias
- Jet veto bias

Glauber-MC p-Pb VSIN = 5.02

10

Multiplicity

600

400

200

- Geometrical bias
- Include (and indicate) bias in the definition

$$Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb} / dp_T \rangle_{cent}}{dN^{pp} / dp_T}$$

Not R_{pPb} as not 1 in absence of nuclear effects

Alternative approach using neutrons 77

- Use forward neutrons to bin event classes
 - Not expected to lead to selection bias
 - But smaller dynamic range
- Obtain scale factor from data using only minbias values for \frown Glauber $\langle N_i \rangle = \langle N_i \rangle \langle S_i \rangle / \langle S \rangle$
- Assume
 - <Npart>: mid-rapidity signal
 - <Npart>-1: forward signal
 - <Ncoll>: high- p_T yield
- Methods lead to consistent results
 - Q_{pPb} flat at high p_T (>10 GeV/c)
 - <Ncoll> within 10%

Preliminary

78

- Charged particle Q_{pA} consistent with unity at high p_T
 - Cronin peak develops with multiplicity
- D meson Q_{pA} independent of p_T above 2 GeV/c
 - Consistent with unity

NB. Estimators have different dynamic range

- $J/\psi \rightarrow \mu\mu$: Multiplicity dependent suppression in p-going direction:
 - Shadowing region; $\langle x \rangle \sim 10^{-4}$
- No suppression in Pb-going direction
 - Anti-shadowing region; $\langle x \rangle \sim 10^{-2}$
- $\psi(2S) \rightarrow \mu\mu$: Multiplicity dependent suppression in both directions
- Similar as at RHIC
- J/ψ consistent with shadowing
- ψ(2S) needs additional effects
 → Final state?

Summary

- The pPb control experiment did not give the expected "null" results
- Observables known to exhibit collective effects in PbPb show the same in pA
 - In particular at high multiplicity where the effects are almost as strong
 - Some effects are also present in high multiplicity pp collisions
- Not surprisingly, most can be described by hydrodynamical model calculations, but some also with microscopical models
- Jet quenching not observed but $\psi(2S)$ suppressed relative to J/ ψ may be first indication

Some questions

- What is the smallest (in terms of size and energy content) droplet of QGP to which a fluid dynamical description can be applied?
- Is observed collectivity in momentum space driven by the spatial structure (i.e. the pressure gradients) of the initial matter distribution?
- Are there mechanisms other than hydrodynamics that can generate and quantitatively reproduce the observed collective features in these collisions?
- How does collectivity emerge as a function of system size and energy density? What are the relevant scales (time, energy, size) controlling the degree of collectivity observed in the final state?
- Can one (does it make sense to) disentangle initial from final effects?
- To which extent can a collective effect observed in a larger system be reduced to a superposition of more elementary collisions?
- How can we use our ability to probe different collision energies, centralities and other event characteristics for further measurements?
- How is collectivity in small systems correlated with hard probes of the medium, such as jet quenching and quarkonium spectroscopy?

Some interesting topics I left out

82

Collective flow without fluid dynamics 83

arXiv:1401.1364v1

- BAMPS: Boltzman equation with 2->2 and 2->3 processes
- Can get R_{AA} and v₂ qualitatively (by adjusting one parameter at RHIC energy)

Ridge modulation v_2 and v_3 and CGC 84

p-Pb \ s_{NN} = 5.02 TeV

0-20%

 $\Delta \phi$

• However, a large v_3 component and multi-particle correlations would be a challenge for the model

IP-Glasma model

Dusling QM 2014

IP-Glasma (which otherwise is very successful) fails to describe pPb: Maybe because:

a) It does not keep the IS Glasma induced correlations

b) Initial configuration of proton simply taken symmetric

Identified-particle mean $p_T vs$ multiplicity 86

The data in pp and pPb can also be related via geometrical scaling assuming at high multiplicity

$$\frac{1}{S_{\rm T}} \frac{dN_i}{dy d^2 p_{\rm T}} = F_i \left(\frac{p_{\rm T}}{Q_{\rm s}}, \frac{m_i}{Q_{\rm s}}\right)$$

 $(S_{T} \text{ is calculated in the CGC framework})$

Implications of RpPb rising?

87

Average p_T versus N_{ch}

рр

- Within PYTHIA model increase in mean p_T can be modeled with Color Reconnections between strings
- Can be interpreted as collective effect (e.g. Velasquez et al., arXiv:1303.6326v1)

• pPb

- Increase follows pp up to N_{ch} ~14 (90% of pp cross section, pp already biased)
- Glauber MC (as other models based on incoherent superposition) fails
- Like in pp: Do we need a (microscopic) concept of interacting strings?
- EPOS LHC which includes a hydro evolution describes the data (also pp)

PbPb

• As expected, incoherent superposition can not describe data

Coherent MPI effects

Rise of $< p_T >$ can not be reproduced by incoherent superposition of MPI

89

Centrality (and energy) dep. of $dN/d\eta = 90$

Centrality dependence is strikingly similar to RHIC. This actually holds all the way down to 19.6 GeV (not shown)

Charged particle elliptic flow versus p_T 91

PRL 105 (2010) 252302

Extra

QGP cross-over phase transition

Lattice predicts a cross-over phase transition from hadronic to partonic degrees of freedom

Shear viscosity in fluids

Shear viscosity characterizes the efficiency of momentum transport

quasi-particle interaction cross section

$$\eta = \rho \langle v \rangle \lambda_{mfp} \sim \frac{1}{\sigma}$$

Comparing relativistic fluids: η/s

 $\frac{F}{A} = \eta \frac{v}{L}$

- s = entropy density
- scaling param. η /s emerges from relativistic hydro eqns.
- generalization for non-rel. fluids: η/w (w=enthalpy) (Liao and Koch, Phys.Rev. C81 (2010) 014902)

Large σ →small η/s
→Strongly-coupled matter
→"perfect liquid"

 $F \rightarrow$

L

Tomography of QCD matter

Quantify change of production rates from expected binary scaling

Azimuthally sensitive pion femtoscopy 97

Expected dependence of 3D radii in LCMS relative to event plane angle

Particle ratios and chemical freeze-out 98

• Statistical (thermal) model

$$N_{i} \propto V \int \frac{d^{3} p}{2 \pi^{3}} \frac{1}{e^{(E_{i} - \mu_{B}B_{i})/Tch} \pm 1}$$

- Chemical potential depends on baryon number, strangeness and isospin
- Two parameters: T_{ch} , μ_B
- Obtain: T_{ch} ≈164 MeV ≈ T_c
 - Holds for $\sqrt{s_{NN}} > 10-20 \text{ GeV}$
- Ratios except p/π well described
- Disagreement for p/π may point to the relevance of other effects like
 - Rescattering in hadronic phase
 - Non-equilibrium effects
 - Flavor-dependent freeze-out

New preliminary results using a much larger set of particles including mult-strange particles points to slightly lower Tch

PRL 109 (2012) 252301

Jet suppression 99

J/ψ production in Pb-Pb

100

Different p_T (and centrality) dependence of J/ ψ R_{AA} at LHC and RHIC

J/ψ production in Pb-Pb

101

arXiv:1311.0214

As expected in a scenario with $c\overline{c}$ recombination, especially at low p_T

pPb and Pbp collisions at the LHC 102

- 2-in-1 design for magnets
 - Identical bending field in two beams
 - Locks the relation between the two beams:
 - p(Pb) = Z p(proton)
 - Different speeds for the two beams!
 - Adjust length of closed orbits to compensate different speeds
 - Different RF freq for two beams at injection and ramps
- Short low lumi (~2/µb) pilot run on 12/9/2012
- First run in Jan-Feb 2013: ~ 30/nb
 - p(proton) = 4 TeV
 - Center-of-mass energy 5.02 TeV
 - Center-of-mass with Δy=0.465 wrt lab system in direction of proton beam
 - Two beam configurations were provided

Charged particle pseudorapidity density 103

- Tracklet based analysis
 - Dominant systematic uncertainty from NSD normalization of 3.1%
- Reach of SPD extended to |η|<2 by extending the z-vertex range
- Results in ALICE laboratory system
 - $\Delta y_{cms} = -0.465$ (direction of proton)
- Comparison with models
 - Most models within 20%
 - Saturation models have too steep rise between p and Pb region
 - See for further comparisons Albacete et al., arXiv:1301.3395

NB: HIJING calculations are expected to increase by ~4% from INEL to NSD

ALICE, PRL 110 (2013) 032301

DHC: Two ridges

- A closer look at the two ridges: the near- and away-side ridges
 - Are essentially flat in $\Delta \eta$
 - Slight excess on near side due to small residual jet peak
 - Have the same magnitude
- Projection to Δφ
 - Exclude residual peak (|Δη<0.8| on near-side) exhibits a modulation
 - In HIJING, the correlation shows no qualitative changes with multiplicity
 - Quantify the ridges
 - Ridge yields
 - Fourier coefficients

DHC: Ridge yields

ALICE, PLB 719 (2013) 29 Ridge yield per ∆n 0.10 p-Pb \ s_{NN} = 5.02 TeV Integrate two ridges above Near side Away side $0.5 < p_{T,trig} < 1.0$; $0.5 < p_{T,assoc} < 1.0 \text{ GeV}/c$ \cap baseline on the $1.0 < p_{T,trig} < 2.0$; $0.5 < p_{T,assoc} < 1.0 \text{ GeV}/c$ $1.0 < p_{T.trig} < 2.0$; $1.0 < p_{T.assoc} < 2.0 \text{ GeV}/c$ $2.0 < p_{T,trig} < 4.0$; $0.5 < p_{T,assoc} < 1.0 \text{ GeV}/c$ Near side ($|\Delta| < \pi/2$) $2.0 < p_{T,trig}^{1,019} < 4.0$; $1.0 < p_{T,assoc}^{2,000} < 2.0 \text{ GeV}/c$ $2.0 < p_{T,trig} < 4.0$; $2.0 < p_{T,assoc} < 4.0 \text{ GeV}/c$ Away side $(\pi/2 < |\Delta| < 3\pi/2)$ 0.05 Near and away-side ridge yields Change significantly 0.00 20-40% 0-20% 40-60% • Agree for all p_{τ} and Event class multiplicity ranges ղ p-Pb \ s_{NN} = 5.02 TeV <u>ම</u> 0.08 Increase with trigger p_{τ} Away-side ridge yield p 0 0 7 0 90 90 90 90 90 and multiplicity Widths are approximately the same (not shown) The correlation between nearand away-side yields suggests a common underlying origin 0.02 0.04 0.06 0.08 0.00 Near-side ridge yield per $\Delta \eta$ ALI-DER-46277

DHC: Symmetric ridge

ALICE, PLB 719 (2013) 29

- What would the assumption of a symmetric ridge give?
 - Determine the near-side ridge in $1.2 < |\Delta\eta| < 1.8$
 - Mirror to away-side and subtract

106

No significant other multiplicity dependent structures left over

Particle ratios versus p_T

ALICE, arXiv:1307.6796

- Particle ratios in pPb show similar trends than those in PbPb
- The strength of the effects is similar to those in peripheral PbPb collisions
- Increase of p/π and Λ/K in PbPb usually explained by radial flow and/or parton recombination

Multiplicity scaling of ratios

0<y_{cms}<0.5

- Fit ratio vs dN/dη in p_T bins with power-law (A x^Bwith x=dN/dη)
- Same increase of ratio for similar increase of dN/dη in pPb and PbPb
- Same power-law scaling exponent (B) in pPb and PbPb
 - Underlying mechanism?
- Similar scaling found for p/π

Similar scaling also holds for pp

ALICE, arXiv:1307.6796

108

Insights from data

1()9

- wo-particle angular correlation analysis at low p- are ideal to statistically mini-jet production
- $p_{T} > 0.7 \text{ GeV/c}$ to string breaking)
- Analysis similar to pp (ALICE, JHEP 1309 (2013) 049) except subtraction of double ridge
- Obtain yields from fit as

$$< N_{\text{trigger}} >= \frac{N_{\text{trigger}}}{N_{\text{events}}}$$

$$< N_{\text{assoc,nearside}} >= \frac{\sqrt{2\pi}}{N_{\text{trigger}}} (A_1 \cdot \sigma_1 + A_2 \cdot \sigma_2)$$

$$< N_{\text{assoc,awayside}} >= \frac{\sqrt{2\pi}}{N_{\text{trigger}}} (A_3 \cdot \sigma_3)$$

Number of uncorrelated seeds

- In pPb, the number of uncorrelated seeds scales with VOA multiplicity
- In Pythia, the number of uncorrelated seeds scale with number of MPI

Bias in number of hard scatters

Approximate scaling (~10%) for N_{coll} between 3 and 13, and strong deviation for peripheral and central collisions

Near-side yield

- In pPb, no bias on the near-side per trigger yield except for low multiplicities
- Bias to softer than average collisions
- Caveat: Different event selection than in pp

Away-side yield

- In pPb, no bias on the away-side per trigger yield except for low multiplicities
- Bias to softer than average collisions
- Caveat: Different event selection than in pp

The Φ meson

Unlike in PbPb, the Φ meson does not have the same shape as the p in 0-5% V0A class.

Comparison of 1d and 3d results

Correlation functions in extended range 117

The baseline for 3-pion correlation functions is more flat than for 2-pions. Fit more reliable since neither source nor background shape well known. For a given parametrization main uncertainty from chosen fit range in q.

Isolation of 2-pion correlations

Fitting of 2-pion correlations

119

Gaussian Fit when $E_w = 1.0$

Non-Gaussian features parameterized with an Edgeworth expansion.

- K₃ and K₄ expansion parameters retained and extracted from 3-pion cumulants.
- Free fit performed for all 3 systems and all multiplicity bins.
- $<\kappa_3> = 0.1$ • $<\kappa_4> = 0.5$ Csorgo & Hegyi, Phys. Lett. B 489, 15 (2000)

Isolation of 3-pion correlations

Isolation and fitting of 3-pion correlations 121

3-pion correlation functions

Comparison of c_3 at similar N_{ch} 123

The correlation function is very similar for pp and pPb at similar Nch (unlike for pPb and PbPb)

Edgeworth radii and intercepts

Edgeworth radius ratios

125

Red Points: p-Pb data divided by pp radii trend fit (linear with N_{ch}^{1/3}). Black Points: Pb-Pb data divided by p-Pb radii trend.

J/ ψ production versus rapidity in p-Pb 126

- Suppression at midand forward rapidity
 - Consequences for R_{AA}: Suggests even stronger recombination
- Consistent with shadowing models (EPS09 NLO) and/or coherent parton energy loss
- Specific CGC calculation disfavored

Centrality estimators

N_{coll} from fits to multiplicity distributions 128

- Glauber fit to multiplicity distribution (V0A) with Negative Binomial ansatz coupled to Glauber MC
 - Obtain $P(N_{part}, \mu, k)$ in centrality slices
 - Same approach as in ALICE, PRC 88 (2013) 044909
- Obtain <N_{coll}> (= <N_{part}> -1) from Glauber
 - Similar for different estimators (CL1, V0M, V0A)
 - Similar to MC closure (done with HIJING)
 - Systematic uncertainty from variation of Glauber parameters

Glauber MC Parameters $\rho(r) = \rho_0 \frac{1}{1 + \exp(\frac{r - R}{a})}$ $R = 6.62 \pm 0.06 \text{ fm}$ $a = 0.546 \pm 0.01 \text{ fm}$

Minimum NN distance: 0.4±0.4 fm

pN Cross-section

 $\sigma_{\rm PN}$ = 70 ± 5 mb

Proton radius

 $R_{p} = 0.6 \pm 0.2 \text{ fm}$

N_{coll} from multiplicity

129

Average N_{coll} well determined, but fluctuations within the same class are large

Multiple (semi-)hard collisions

JHEP 0901 (2009) 065

- In pp, the hard cross section exceeds the total cross section
- There must be multiple semi-hard collisions per pp event (MPI)

- Therefore there also must be more than Ncoll semi-hard scatterings in the addition to the hard process
- Implies (strong) correlation between hard process and bulk of particle production?
- Consequences for centrality determination?

Bias in number of hard scatters

131

ALICE, preliminary

- Multiplicity fluctuations induce sizable bias on Mult/N_{part}
- All systems with fluctuations and dynamical limits show this
- Results in bias on the number of particle sources (hard scatterings)

Insights from models

- Models based on MPI include intrinsically a fluctuating number of particles sources
- HIJING
 - studied vs Ncoll (ie no mulitplicity bias)
 - Iow Ncoll: Impact parameter between NN increases
 - high Ncoll: Energy conservation (breakdown of factorization)
 - Toy model
 - Incoherent superposition of NN collisions ("Pythia6+Glauber")
 - Vs centrality from mult in |η|<1.4 (ie only multplicity bias)
 - Strong deviation from Ncoll scaling at low and high centralites

Q_{pPb} (not R_{pPb})

- Qualitatively new elements
 - For a given centrality hard processes qualitatively scale with $\langle N_{coll,cent}^{Glauber} \rangle \langle n_{hard} \rangle_{cent} I \langle n_{hard} \rangle_{pp}$
 - Mean NN impact parameter increases in peripheral collisions
 - Expect softer than average collisions?
 - Also, veto for high- p_{T} processes in low multiplicity classes
- Alternative: Include (and indicate) bias in the definition

$$Q_{pPb,cent} = \langle N_{cent}^{Glauber} \rangle \frac{\langle dN^{pPb} / dp_T \rangle_{cent}}{dN^{pp} / dp_T}$$

Reminder: R_{pPb} should be 1 in absence of nuclear effects

Q_{pPb} (not R_{pPb})

134

Not a R_{pPb} measurement as not equals to 1 in absence of nuclear effects!!!

Spread reduces: $CL1 \rightarrow VOM \rightarrow VOA$

Jet veto present in 80-100% CL1, but not any longer in VOA

Q_{pPb} (not R_{pPb}) versus Pythia6+Glauber 135

ALICE, preliminary

Data can be described (at high p_T , and for jet veto classes) with simple model based on incoherent superposition of pp collisions (Glauber+Pythia6)

Comparison of shapes (norm at 10 GeV) 136

Bias from MPI versus fluctuations 137

ALICE interpretation: Biased not yet R_{DPb} measurement

ATLAS interpretation: Centrality estimator in 3.2<η<4.9 Dep. on geometrical model

Fluctuations: Ω vs σ

From A. Morsch (HP13)

138

Geometrical fluctuations described by overlap function (eikonal) T_N . Cross-section itself does not fluctuate (since = *flux* (db²) x probability).

Only a question of terminology ?

Scaling of particle production 139 $<S>_{i} / <S>_{MB} vs <dN/d\eta>_{i} <dN/d\eta>_{MB} (-1<\eta_{Iah}<0)$ Normalized signals • PHOBOS d-Au: $\eta \rightarrow 1.6^* \eta$ (beam rapidity) • V0-A ring 1 • Similar dependence except A-going dir. ⊃b dN/dη(1.5<η<2.0) 1.6 • $dN/d\eta(-2.0 < \eta < -1.5)$ ರ р 1.2 **ALICE Preliminary** •p-Pb • V0-C ring 1 2 • Pb-p **ALICE Preliminary** Ph 0.8 p-Pb ∖s_№ = 5.02 TeV Ncoll 0.6 0.4 0.2 Npart Data/Fit 1 02 0.92 0 Npart ····· N^{target} or N_{coll} 0.4 0.6 0.8 1.4 $(\langle dN/d\eta \rangle / \langle dN/d\eta \rangle_{MB})_{1 < \eta < 0}$ Fit: assuming dN/d₁ scales with N • V0 part -2 Tracklets $\frac{\langle S \rangle_i}{\langle S \rangle_{MB}} = \frac{\langle N_{part} \rangle_{MB}}{(\langle N_{part} \rangle_{MB} - \alpha)} \cdot \left(\frac{\langle \mathrm{d}N/\mathrm{d}\eta \rangle_i}{\langle \mathrm{d}N/\mathrm{d}\eta \rangle_{MB}} \right)_{-1 < \eta < 0} - \frac{\alpha}{(\langle N_{part} \rangle_{MB} - \alpha)}$ ტ dN_{ch}/dη dN_{ch}/dη(10<p₁<20GeV/c) $\alpha = 0 - \text{perfect N}_{\text{part}} \text{ scaling}$ PHOBOS d-Au α = 1 – perfect N_{coll} (or N_{part} target) scaling -2 2 -4 0 α has clear meaning (N_{_{nart}} \text{ vs N}_{_{coll}} \text{ scaling}) η_{CMS}

correlation between causally disconnected observables (eg: slow neutrons - multiplicity) \rightarrow connection to geometry.

Hybrid Method

- 1) assumption: ZN insensitive to dynamical biases \rightarrow slice events in ZN 2) assumption:
 - a) Mid-rap dN/d η scales with N_{part}
 - b) Pb-side dN/d η scales with N _{part} target
 - (= N_{coll} in pA)
 - c) Yield at high- p_{T} scales with N_{coll}

$\langle N_{\text{part}} \rangle_i^{\text{mult}} =$ $\langle N_{\text{coll}} \rangle_i^{\text{mult}} =$	$\langle N_{\text{part}} \rangle_{MB} \cdot \frac{\langle S \rangle_i}{\langle S \rangle_{MB}}$ $\langle N_{\text{part}} \rangle_i^{\text{mult}} - 1$	
$\langle N_{\rm coll} \rangle_i^{\rm Pb-side}$	$= \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle S \rangle_i}{\langle S \rangle_{MB}}$	-
$\langle N_{\rm coll} \rangle_i^{\rm high-p_T}$	$= \langle N_{\text{coll}} \rangle_{MB} \cdot \frac{\langle S \rangle_i}{\langle S \rangle_{MB}}$	-

All values within at most 10%

→ consistency of assumptions

This does not yet prove the validity of any (or all) of these assumptions 2a),b),c)

Multiplicity vs Centrality

