

Small-x structure of nuclei and the Forward Calorimeter in ALICE

Colloqium Yonsei University

Constantin Loizides (ORNL)

01.12.2021 (v1)

Proton structure: Parton density functions

- Protons and neutrons are *composite particles*, consisting of:
 - quarks: (up, down, strange...) carry mass, charge, flavor quantum numbers
 - **gluons**: mediate *interaction*; bind quarks together
- Proton structure is specified by **Parton Distribution Functions** \bullet
 - Density of quarks, gluons, as a function of momentum fraction $x = p_{q,g}/p_p$ denoted as $g(x), u(x), u(\overline{x}) \dots$
 - Density distributions depend on wave length (1/momentum) of probe: Q^2 or μ^2 ulletdenoted as $g(x, Q^2)$...
 - Sum rules, e.g flavor sum (eg. $(u(x) \bar{u}(x)) dx = 2)$ apply for each scale Q²

Parton density functions govern differential cross sections, i.e. probabilities for particle production as function of momentum \Rightarrow particle production in collisions probes the nucleon/nucleus structure

e.g. proton = uud + gluons

Proton structure: Parton density functions

Gluon content of proton increases with Q²

Evolution of the PDFs

Evolution of density functions with x and Q² governed by evolution equations:

- DGLAP: linear evolutions: splittings only
- BK/JMWLK: non-linear evolution: gluon fusion

In x (time resolution)

Saturation/non-linear evolution at:

- small x: large gluon density
- small Q²: large effective gluon size

Colliders for proton and nuclear structure

Hera at DESY, Hamburg

1992-2007

RHIC, Brookhaven 2000-present

Deeply inelastic scattering probe proton structure with electron beams

pp, p+Au, d+Au, Au+Au √s_{NN}= 200 GeV

LHC, Geneva 2009-present

pp, p+Pb, Pb+Pb $\sqrt{s_{NN}}$ = 2760-14000 GeV

p+A: probe nuclear s with proton bea

Two-parton kinematics in pA collisions

$$\hat{s} = x_1 x_2 s \approx (2 p_T)^2 \qquad \hat{s} = x_1 x_2 s \approx (2 p_T)^2$$
$$x_1 \approx x_2 \approx \frac{2 p_T}{\sqrt{s}} \qquad x_1 \approx \frac{p_T}{\sqrt{s}} e^{-y}$$

Note: 2 to 2 scattering is LO kinematics; NLO processes add additional freedom/smearing

Large mass final state

$$Q^2 = \hat{s} > (2 p_{\rm T})^2$$

small probability

RHIC forward particle suppression

Gluon density larger in nuclei: compare nuclei to protons $Q_s^2 \approx \frac{x G_A(x, Q^2)}{\pi R_A^2} \propto A^{1/3} x^{-\lambda}$ R_{dAu} $0.8 + 0 h^{-} (\eta = 2.2)$ Nuclear modification factor R_{dAu} $R_{dAu} = \frac{dN/dp_T|_{dAu}}{A \, d\sigma/dp_T|_{pp}}$ 0.6 0.4 0.2 • Yield suppression $R_{dAu} < 1$ seen at RHIC

First hint of saturation ... at very low p_T ; other effects might play a role \Rightarrow Can we confirm this at LHC?

Probes $x \sim 10^{-3}$

RHIC and LHC for x~10⁻³

Mid-rapidity at LHC \approx forward rapidity at RHIC

No sign of suppression at high $p_T > 2$ GeV $p_T < 2$ GeV expect soft effects; N_{part} scaling

RHIC and LHC for x~10⁻⁴

Mid-rapidity at LHC \approx forward rapidity at RHIC

Sign of suppression at high $p_T > 2$ GeV in forward direction consistent with EPPS16 and CGC calculation

NB: Backward dependence not described by higher twist model that reproduces RHIC data in pAu

Electroweak probes: large Q²

 μ^{-} γ/Z⁰ Xp XA

Electroweak boson production: Z, W probe quark structure of the nucleus at energy scale m_Z , $m_W \approx 90$ GeV

Measurements agree with expectations for pp (no nuclear modification) and nuclear PDFs

No/very small nuclear effect at large Q²/small wave length

Putting it all together: Nuclear PDFs

Nuclear PDF fits: combine experimental inputs to map the parton densities in nuclei

Open charm production at LHC

 $R_{\rm pPb} \sim 1$ at backward and mid-rapidity; below 1 at forward rapidity

Suppression at large rapidity compatible with gluon suppression (in line with nuclear PDFs/shadowing and CGC calculations)

PDF reweighting with charm data

Forward charm data brings significant constraints; prefer shadowing with $R_{\rm g} \sim 0.7$ at x < 5 10⁻³ (Q² = 10 GeV)

Eskola, Helenius et al, JHEP 05 (2020) 037

Q2 dependence: Extrapolation to small Q (large wave length)

Charm reweighted PDFs show strong dependence on Q² due to DGLAP evolution

Can we test this experimentally? How low in Q² do we trust the formalism?

Ultra-peripheral collisions: a photon beam from Pb

at small Q $\approx 1/2 \text{ m}_{J/\psi} = 1.5 \text{ GeV}$

Two-particle correlations to probe non-linear evolution

QCD 2 \rightarrow 2 scattering

Momentum balance in transverse plane Produces a back-to-back jet

Directly probes multiple gluon interactions

Two-particle correlations at RHIC: PHENIX

 $|\eta| < 0.35$ and $3.0 < \eta < 3.8$

Decorrelation of away side yield; expected trend as a function of x

Large suppression at 'x' < 10⁻³ in central events, no significant broadening

Scan 'x' with p_{T1} and forward, mid rapidity

Two-particle correlations at RHIC: STAR

STAR, arXiv: 2111.10396

Suppression of conditional yield (roughly linear with $A^{1/3}$) Similar as before, no obvious broadening found

Multiplicity dependence of di-hadron correlations

Try to separate jet-like and flow-like correlations? Near side long range amplitude 20-40 per cent of away side!

Analysis geared towards flow-like effects: Long range correlations

Two-particle correlations at LHC

G Giacalone, C Marquet, NPA 982, 291 (QM2018)

Away-side peak after flow subtraction

Assumes pure v₂; near-away symmetry for long-range component

Yield suppression and mild broadening?

Comparison to CGC calculation

Theory calculations show narrow peak; add final state radiation/shower effects?

Di-jet correlations at LHC

Di-jets with p_T 28-45 GeV

No strong effect seen in data so far... Explore p_T dependence?

Summary so far

- Signs of suppression of inclusive particle production in small-x regime
 - RHIC: charged particle/light hadron suppression \bullet
 - LHC: Light hadron and D meson suppression at forward rapidity lacksquare
- nPDF fits with forward D meson input: **smaller gluon density** in nuclei
- Two-particle correlations and UPC results also indicate smaller gluon density in nuclei
- However, some open questions:
 - RHIC and LHC see effects at different x \bullet
 - Multiple interactions near kinematic limits? Broadening (two-particle correlations, or dijets) not seen so far

 - Hadronic observables also suspect to final state effects \bullet

New/cleaner measurements (photons; maybe UPC) and/or confirmation by multiple experiments needede!

Probing the gluon density in a hadron collider

Heavy hadron: also directly sensitive but fragmentation reduces kinematic constraint

More processes contribute, e.g. gluon splitting

Direct photon production

direct- γ , Compton (LO)

Photon momentum directly related to incoming partons

No final state interactions

More processes contribute, e.g. annilation

 $x \approx \frac{Q}{\sqrt{s}} \exp(-y)$

Measure forward isolated photons

- At LO more than 70% from Compton with direct sensitivity to gluon density
- Not affected by final state effects nor hadronization
- Uniquely small-x coverage (similar to LHeC)
- Goal
 - Explore non-linear QCD evolution at small x
 - Constrain nuclear PDFs at small x
 - Logarithmic dep. of QCD evolution on Q and x, requires several measurements over largest possible range

Strong small-x program at LHC

- Various experiments/measurements: isolated y, DY, open charm (+UPC)
- Test factorization/universality
- Complementary to fRHIC + EIC

The ALICE FoCal project

3.4 < η < 5.8 Forward Calorimeter

1	ITS Inner Tracking System
2	TPC Time Projection Chan
3	TRD Transition Radiation I
4	TOF Time Of Flight
6	EMCal Electromagnetic (
6	PHOS / CPV Photon Sp
7	HMPID High Momentum Identification Dev
8	MFT Muon Forward Track
9	FIT Fast Interaction Trigge
10	Muon Spectromete

ZDC Zero Degree Calorimeter

The FoCal concept

E

FoCal-E: high-granularity Si-W sampling sandwich calorimeter for photons and π^0

FoCal-H: conventional metal-scintillator sampling calorimeter for photon isolation and jets

- PAD (LG) layers: granularity 1x1 cm², analog readout • PIXEL (HG) layers: 30x30 µm² digital readout (ALIPIDE)

Letter-of-Intent, CERN-LHCC-2020-009

Longitudinal profile (2y showers)

Trans. profile

- Main challenge: Separate γ/π^0 at high energy
- Two photon separation from π^0 decay (p_T=10 GeV, η =4.5) ~5mm • Two readout granularities

Key ingredients for isolated photon measurement

- Main ingredients for direct photon identification • π^0 reconstruction efficiency: measure background Isolation cut (EmCal + HCal)
- Rejection of decays by invariant mass reconstruction

Improvement in signal fraction by factor ~10 to ~0.1-0.6

Expected performance and impact on nPDF

Relative uncertainties in pPb

- Systematic uncertainty <10% at high p_T
- Below ~10 GeV, uncertainty rises due to remaining background
- Compare to e.g. open charm: test factorization/universality

• Significant improvement (up to factor 2) on EPPS16, nNNDF 2.0 uncertainties

nNPDF 2.0 from DIS + LHC

- No constraints for $x < 10^{-2}$ from DIS
- LHC: high-Q² constraints down to 10⁻⁴
- FOCAL significant constraints over a broad range: $\sim 10^{-5} - 10^{-2}$ at small Q²
 - No additional constraints from EIC expected

Focal physics program: other observables

CGC decorrelation studies

Good performance of FoCal-E + H jet, di-jets in pp, pPb, UPC

Large program beyond π^0 and γ in pp, p-Pb

Small-x with ultra-peripheral collisions

Early prototypes and tests: PAD layers

ORNL/Japan: initial concept

VECC/BARC prototypes: MANAS readout

PS + SPS test beam energy resolution:

$$\frac{\sigma}{E} = \frac{15.36\%}{\sqrt{E}} \, \Theta$$

NIM A 764 (2014) 24 JINST 15 (2020) 03, P03015

Full module mini-FoCal at PS and SPS (2018)

Invariant mass: π^0 peak in 13 TeV pp collisions

- 60 instrumented pad sensor wafers
- ~3600 channels
- APV25 hybrid + SRS readout
- built in Tsukuba
- beam tests at CERN (PS, SPS, ALICE)
- Encouraging results

Pixel prototypes: fully digital Si-W pixel calorimeter

EPICAL-1: MIMOSA pixel tower

4x4 cm sensitive area

Detector seminar at CERN: https://indico.cern.ch/event/856365/

EPICAL-2: ALPIDE pixel tower

LCWS talks: T Rogoschinski, F Pliquett

Extremely compact design: high pixel density and small Molière radius Beam tests at DESY (e⁻, 2-5.4 GeV), PS, SPS (mixed, 30-244 GeV)

> Main activity in Norway (Bergen) and Netherlands (Utrecht/Nikhef) R&D also in the context of medical application and CALICE

Single Event Hit Distribution - FoCal Pixel Prototype

- Pixel layers: very detailed view of shower
 - 2-shower separation at mm scale
 - Use hit count as amplitude

EPICAL-2 test beam at DESY (2019/2020)

LCWS talks: T Rogoschinski, F Pliquett

Detailed response simulations with AllPix²

Digital pixel calorimetry: good energy resolution and excellent spatial resolution

Cluster counting provides better energy resolution than hit counting

Final detector: FoCal-E layout

Module: 18 pad layers + 2 pixels layers

- Pixel layers: individual readout

8 cm

FoCal-E: 22 modules

PAD module design

HGCRO

Power Supply I

8 cm

Read-out ASIC: HGCROC (CMS HGCAL)

- 72 channels per chip: ADC + TOT
- Dynamic range: MIP to 2 fC
- Internal buffer; data shipped on readout

sub-module: PCB+Sensors+W plate

Experience with module assembly and design at Tsukuba Univ., Tsukuba Tech

PCB carries 5 sensors (72 pads each), 5 HGCROC: ~45x8 cm

HGCROC tests and board design: LPSC, Grenoble

Pixel layer design

Sensor: ALPIDE pixel sensor

- Developed for ALICE ITS
- Continuous readout with priority encoder readout
- Shaping time $\sim 5 \,\mu s$
- Up to 960 Mb/s output per sensor

9 ALPIDE flex for <u>pCT application</u>)

Validation and improvements of the sensors and readout chips

- R&D of Silicon sensor fabrication and test (p-pattern / n-type sensors)
- Explore possibility and funding
 - Test of HGCROC v2 readout chip with n-type sensors
 - Development and validate production of improved / fixed chip for n-type sensors

- Validate production of pixel sensors (ALPIDE) for the high granularity layers
- Explore possibility and funding for
 - ALPIDE-REBIN: reducing data load via rebinning the digital information into macro pixels (~factor 10 reduction)
 - ALPIDE++: Speeding up the readout

Yonsei university

FoCal-H: Prototype and final design

Raw charge distributions from fall 2021 SPS test beam

Exploring capillary-tubes based design for FoCal-H filled with scintillating fibers + readout with HGCROC chip

- Size 90cm x 90 cm x 110 cm
- About 2000 channels

Attractive for production

- Cu tubes are readily available
- Seamless tower stacking possible
- Synergies with EIC calorimetry and dual readout (IDEA, upgrades at EIC)

Copenhagen, Sofia uni.

10cm x 10cm x 55 cm

(Activity maybe also interesting for Korean institutes working on DR calorimetry)

$3.4 < \eta < 5.8$

- Non-linear QCD evolution (saturation) is non-negotiable for QCD (similar to Higgs boson in SM)
 - One of the key topics at the EIC
- FoCaL very forward, highly-granular Si+W "shower tracking" ECal with HCal
 - Main physics goal to explore non-linear QCD evolution
 - Isolated photons, correlations, UPC
 - Excellent performance over large η down to low p_T with small uncertainties
 - Strong small-x program at LHC together with LHCb; smaller x-region than at fRHIC and EIC
- Exciting calorimeter concept and technology
 - Large experience with prototypes
 - Technology synergy (ALPIDE, HGCROC)
- Feasibility (choice of technology, integration, adequate resources) established Challenging and interesting times ahead towards the TDR and production

Summary

CERN-LHCC-2020-009

Extra

The FoCal physics program

1. Quantify nuclear modification of the gluon density at small-x

Isolated photons in pp and pPb collisions

2. Explore non-linear QCD evolution

- Azimuthal $\pi^{0-}\pi^{0}$ and isolated photon- π^{0} (or jet) correlations in pp and pPb collisions
- 3. Investigate the origin of long range flow-like correlations
 - Azimuthal π⁰⁻h correlations using FoCal and central ALICE (and muon arm) in pp and pPb collisions
- 4. Explore jet quenching at forward rapidity
 - Measure high p_T neutral pion production in PbPb

5. Other measurements

- Jets and dijets in pp/pPb and UPC
- Quarkonia in UPC (and pp*)
- Photon and pion HBT (*)
- W,Z in pp/pPb?
- Isolated photons in PbPb (*)
- Measurements at 14 TeV
 - Universality at small-x
 - Saturation in pp
 - High-x (>0.1) gluon constraints (*)

(*=feasibility not yet explored)

Performance in PbPb

- background

Performance in PbPb affected by shower overlaps and combinatorial

• Efficiency for high energy neutral pions nevertheless quite good Combinatorial background may prohibit very low p_T reconstruction, but above 5 GeV expect a precise RAA measurement

- Experimentally, measure isolated photons to suppress contribution from bremsstrahlung and fragmentation photons
 - In addition, rejects also decay photon background

Isolated photons

Light and heavy-flavor results

ALI-PREL-314616

Sensitive to gluon PDF at NLO but also suspect to final state and hadronization effects

Measurements exhibit features that are difficult to disentangle between initial or final state effects

Forward open charm by LHCb

LHCb, arXiv:1707.02750

- Forward D⁰ suppression observed by LHCb
- Consistent description with nuclear PDFs, with a large contribution from high x from fragmentation
 - Data constrain nPDF uncertainties by ~factor 2
 - Potential final state effects ignored
 - Small tension with ALICE mid-rap data
- Measurements with photons will verify factorization and universality

Eskola et al., arXiv:1906.02512

Kusina et al., PRL121 (2018) 052004 ALICE, arXiv:1906.03425

Charm vs photon sensitivity

Toy study: Photons are more sensitive to shape of Rg than charm

Isolated photons with LHCb

New analysis being pursued in LHCb (LANL group)

- Signal: (early) photon conversions
 - Clean identification
 - About ~0.25 X₀ with 6% uncertainty
 - Limited efficiency ~10%
 HLT trigger in Run 3
- Decay rejection by isolation
 - Acceptance limited to η<4

 (isolation up to Ecal edge η=4.4)
- Final selection: cuts combined with BDT

- Photon efficiency between 25-45% (depending on activity)
- Reconstruction efficiency of π⁰ only ~15% above 2 GeV
 Compare with FoCal ~85%
- Direct tagging of decay photons very limited

Focal performance (pPb) $(\eta_{lab} = 5)$

 $E_{T,iso} < 5 \text{ GeV}$

N.B.: "untagged" means "decay photon rejected"

Efficiencies sig, bkg

Improvement (eff sig/eff bkg)

FoCal operating point in LOI

LHCb-FIGURE-2020-006

Comparison with LHCb

0.3

BDT response

• LHCb analysis approach: identify signal by BDT based on a combination of variables, e.g. isolation energy Improvement in S/B significantly smaller than of FoCal Leads to factor 2 or larger systematic uncertainty compared to FoCal • Expected performance depends on uncertainty on remaining background

> (WP at ε_{sig} =0.2 for LHCb, at $\varepsilon_{sig} \sim 0.4$ for FoCal)

FoCal vs LHCb: sensitivity to nPDF

η=4.5 (FoCal)

FoCal uncertainties

Significantly better performance on nuclear PDF expected by FoCal measurement (in addition one unit higher reach in pseudorapidity, i.e. factor 3 smaller x reachable)

LHCb projected uncertainties (5% vs 10% uncertainty on the background)

Comparison of isolated performance with LHCb projection

FoCal performance (4< η <5) outperforms LHCb (3< η <4) by a factor of 2 or more in uncertainty (LHCb measures only about 25-40% of the photons from π^0)

> (WP at ε_{sig} =0.2 for LHCb, at $\varepsilon_{sig} \sim 0.4$ for FoCal)

Direct photon uncertainties

 $\eta_{cms} = \eta_{lab} \sim 4.5$ for pp

 $\eta_{cms} \sim 4.5$: $\eta_{lab} \sim 5.0$ for p-Pb

nNNPDF 1.0 vs 2.0 at M_z

- Include (some) LHC W/Z data \bullet
- Include DIS charged current data: flavor separation

Include 'positivity constraint': F_{L} (long structure function) has to be positive

nNNPDF 2.0

NNPDF2.0

- Include (some) LHC W/Z data \bullet
- Include DIS charged current data: flavor separation ullet
- \bullet

nNNPDF 1.0

Include 'positivity constraint': F_{L} (long structure function) has to be positive

FOCAL places significant constraints in $10^{-5} < x < 10^{-3}$

Sensitivity to non-linear evolution: What if we see suppression?

Clear tension between nNPDF2.0 and pseudo data: Red band/line above the data points

Conclusion: a suppression at LHC would result in a tension: sign of non-linear evolution?

arXiv:2006.14629

Kinematic coverage

FoCal PAD readout: CMS HGCROC

Plan to use CMS HGCROC for final detector

- 72 channels + 6 calibration channels
 4 ch common mode + 2 MIP pads
- Large dynamic range via **ADC + Time-over-Threshold**
 - MIP to ~2 fC
- Readout samples all channels @ 40 MHz
 - Trigger summary sent for each bunch crossing
 - 512 bunch crossings stored on chip
 - Full data shipped out on request ('trigger')
- <complex-block>

Readout PCB prototype

