Jet quenching from RHIC to LHC

Constantin Loizides (loizides@mit.edu)

Outline

•Parton Quenching Model for RHIC high-p_t data

•Jet reconstruction at LHC

•Modelling jet quenching at LHC

Experimental discoveries at RHIC

High-p_T suppression observed

by comparing p_{T} distributions of leading particles in pp and AA (for different centralities)

Nuclear modification factor

Parton energy loss inspired by pQCD

- Partons travel ~4 fm in the high <u>color</u>-density medium
- Successive calculations: a QCD mechanism dominates: medium-induced gluon radiation
- Coherent wave-function gluon acummulates k_τ due to multiple <u>inelastic</u> scatterings in the medium until decoheres and is radiated

Gyulassy, Pluemer, Wang, Baier, Dokshitzer, Mueller, Peigne', Schiff, Levai, Vitev, Zhakarov, Salgado, Wiedemann, ...

Calculating Parton Energy Loss (BDMPS-Z)

Baier, Dokshitzer, Mueller, Peigne', Schiff, NPB 483 (1997) 291 Zakharov, JTEPL 63 (1996) 952 Salgado, Wiedemann, PRD 68(2003) 014008

Calculating the energy loss

Finite parton energy (qualitatively) * If $E < \omega_c$ (e.g. small p_T parton with large L): $\langle \Delta E \rangle \approx \int_0^E d\omega \, \omega \, \frac{dI}{d\omega} \propto \alpha_s \, C_R \, \sqrt{E\omega_c} \propto \alpha_s \, C_R \, \sqrt{E} \, \sqrt{\hat{q}} \, L$ > Introduces dependence on parton energy > $\hat{q} \rightarrow \hat{q}^{1/2}$: smaller sensitivity to density > $L^2 \rightarrow L$: linear dep. on path length

Quenching Weights

- Goal: compute high- p_{T} suppression in BDMPS-Z framework
- QW = energy loss probability distributions

$$P(\Delta E; C_R, \hat{q}, L) \qquad [\alpha_s = 1/3]$$

' 30

- Calculated from $\omega\,dI/d\omega$, in $E\to~\infty$ approximation

Application: Parton Quenching Model

- QW + Glauber + PYTHIA for parton generation and fragmentation func.
- The Monte Carlo procedure in short:
 - generate parton (q or g) with PYTHIA (or back-to-back pair)
 - > calculate its L and average \hat{q} along the path $[\hat{q}(\vec{s}) \propto T_A T_B(\vec{s})]$
 - > use quenching weights to get energy loss
 - > quench parton and then hadronize it (independent fragm.)

A.Dainese, C.L., G.Paic, EPJC38 (2005), 461

8/30

PQM: R_{AA} for Au+Au at 200 GeV

Density (\hat{q}) **"tuned**" to match R_{AA} in central Au+Au at 200 GeV

Need $\langle q \rangle$ = 14 GeV²/fm to describe data

PQM: Centrality dep. for Au+Au at 200 GeV

• Centrality evolution according to Glauber-model collision geometry

$\hat{q}(\vec{s};b) = k \times T_A T_B(\vec{s};b)$

PQM: Disapearance of the away-side jet

PQM: Extrapolation to other cms energy

- Extrapolation in \sqrt{s} : assuming $\hat{q} \propto N_{gluons}/volume \propto (\sqrt{s})^{0.6}$ (EKRT saturation model, NPB 570 (2000) 379)
- First test:

 $\hat{q}_{62\,\mathrm{GeV}} \approx \hat{q}_{200\,\mathrm{GeV}} / 2 \approx 7 \,\mathrm{GeV}^2 / \mathrm{fm}$

energy extrapolation works reasonably well

PQM: Prediction for LHC

Scaling according to saturation model leads to $\langle \hat{q} \rangle = 100 \text{ GeV}^2/\text{ fm}$ (for central collisions)

PQM predicts flat (p_T-independent) R_{AA}

13/30

Why R_{AA} is flat \leftrightarrow Surface effect

- Long path lengths exploited only by high energy partons
 - > R_{AA} doesn't increase at high p_{T}

> Exercise:
$$L \equiv \langle L \rangle \Rightarrow R_{AA}$$
 increases with p_T

Limited sensitivity of R_{AA}

15/30

K.Escola, H.Honkanen, C.Salgado, U.Wiedemann, NPA747 (2005) 511 C.L., nucl-ex/0501017

First data of R_{AA} vs ϕ appearing ...

 \rightarrow Further handle on *L*-dependence*

Note: model is not $\Delta E \propto L^2$, rather $\Delta E \propto L$ **Beware:** effect of collective flow on R_{AA} vs ϕ !?!

16 / 30

Motivation for reconstructed jets in A+B

- Reconstructed jets allow one to measure the 4-momentum of the original parton
- The associated particles measure the jet structure

• Ideally: Map out observables as function of jet (parton) energy

Novalities at the LHC

LHC provides factor 30 jump in cms energy w.r.t. RHIC

Larger "dynamic" range implies:

- QGP even more dominant compared to final-state hadron interactions
- Higher ε_0 at earlier time τ_0 (sQGP \rightarrow QGP?)
- Main novalities: Plentyful hard processes and wide kinematical window

Hard probes at the LHC

- Medium modification at high p_T
 - "Mass" production of high p_⊤ particles (also containing heavy flavours)
- Melting of members of Y family
 - Large cross section for J/ψ and Y family production

Medium effects on jets

- Jets shape and jet fragmentation modified by the medium
- Jet tomography
- Dijet/monojet ratio
- Jet-γ and Jet-Z^o
- B-tagged jets
- Multi jets

Heavy-ion experiments at LHC

CMS: pp experiment with HI program

|η|< 2.5, p_t>1 GeV+~1%resolution, full calorimetry (|η|< 5), high rates

ATLAS: pp experiment, HI proposal in progress

100 GeV Jets in ALICE (Pb+Pb at 5.5 TeV)

Jets in ALICE (Pb+Pb at 5.5 TeV)

Monte Carlo: Jet reconstruction

23/30

C.L., nucl-ex/0501017

Consequences of small cone size

Systematic underestimation of parton energy possible (~15% for 100 GeV)

•z=p_L/E_{iet} increases

•Corrections not obvious since shape of quenched jets is not known from pp

24 / 30

PYTHIA + PQM toy model

MC event generator combining consistently parton shower evolution and in-medium gluon radiation is not available.

Parton jet (E) \rightarrow Parton jet (E- Δ E) + N gluons(Δ E/N)

Quenching of the final partonic jet system and radiation of $1 \le N \le 6$ additional gluons

Use PQM for $\langle q \rangle$ =1.2, 12 and 24 GeV²/fm

Embed quenched jets into 0-10% central HIJING events

Medium induced out-of-cone radiation

SW PRL93 (2004) 042301

26/30

Jet tomography

Most direct measurement, however need to control background and need calorimetry

Modification of longitudinal particle distribution

Transverse fragmentation

Theory predicts k_{T} -broading (not implemented in the afterburner)

29/30

Summary

•PQM combines the BDMPS framework with Glauber geometry for calculation of high- p_t suppression

- Strong medium effect expected at LHC
- R_{AA} prediction for LHC is independent of p_t
- At LHC, jets can be identified on top of background starting 50-100 GeV; resolution depends on type of detector and heavy-ion background (centrality)
- R_{AA} for jets or modification of jet fragmentation can be modelled in MC; detailed detector simulations needed.